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PREFACE

This book is based on a set of lecture notes for a one-semester first-year

chemistry graduate course in Thermodynamics and Introductory Statistical

Mechanics, which I taught at Florida State University in the Fall of 2001 and

2002 and at various times in prior years. Years ago, when the University was

on the quarter system, one quarter was devoted to Thermodynamics, one

quarter to Introductory Statistical Mechanics, and one quarter to Advanced

Statistical Mechanics. In the present semester system, roughly two-thirds of

the first-semester course is devoted to Thermodynamics and one-third to

Introductory Statistical Mechanics. Advanced Statistical Mechanics is

taught in the second semester.

Thermodynamics is concerned with the macroscopic behavior of matter,

or rather with processes on a macroscopic level. Statistical Mechanics

relates and interprets the properties of a macroscopic system in terms of

its microscopic units. In this book, Thermodynamics was developed strictly

from a macroscopic point of view without recourse to Statistical-Mechanical

interpretation, except for some passing references to fluctuations in the dis-

cussion of critical phenomena. Both Thermodynamics and Statistical

Mechanics entail abstract ideas, and, in my opinion, it is best not to intro-

duce them simultaneously. Accordingly, the first 12 chapters (Part I) deal

exclusively with Thermodynamics; Statistical Mechanics is only then intro-

duced.

Thermodynamics, unlike some other advanced subjects in Physical

Chemistry, does not require complicated mathematics, and for this reason

the subject is often thought to be ‘‘easy.’’ But if it is easy, it is deceptively

xv



easy. There are subtleties and conceptual difficulties, often ignored in

elementary treatments, which tend to obscure the logical consistency of

the subject. In this book, conceptual difficulties are not ‘‘swept under the

rug’’ but brought to the fore and discussed critically. Both traditional and

axiomatic approaches are developed, and reasons are given for presenting

alternative points of view. The emphasis is on the logical structure and

generality of the approach, but several chapters on applications are included.

The aim of the book is to achieve a balance between fundamentals and

applications.

In the last four chapters of the book, which are devoted to Statistical

Mechanics, not much more can be hoped to be accomplished than to cover,

from an elementary point of view, the basics. Nonetheless, for some stu-

dents, especially those who are not physical-chemistry majors, it is essential

that simple statistical-mechanical applications be included, thus acquainting

students with some working knowledge of the practical aspects of the sub-

ject. Among the applied statistical-mechanical topics are numerical calcula-

tions of entropy and other thermodynamic functions, determination of

equilibrium constants of gases, and determination of heat capacity of solids.

Although all fundamental equations are developed from first principle,

my treatment is more advanced than what some students are likely to

have been exposed to in elementary discussions of thermodynamics. This

book is designed as a one-semester course, useful both to students who

plan to take more advanced courses in statistical mechanics and students

who study this as a terminal course.

An essential feature of this book is the periodic assignment of homework

problems, reflecting more or less the content of the topics covered. Ten

typical problem sets are included in Appendix I and their solutions in

Appendix II.

I am grateful to Kea Herron for her help in formatting the manuscript, and

to members of the Wiley Editorial staff, especially Amy Romano and

Christine Punzo, for their advice, patience, and encouragement.

BRUNO LINDER

xvi PREFACE



CHAPTER 1

INTRODUCTORY REMARKS

Thermodynamics, as developed in this course, deals with the macroscopic

properties of matter or, more precisely, with processes on a macroscopic

level. Mechanics (especially quantum mechanics) is concerned with mole-

cular behavior. In principle, and in some limited cases, the molecular prop-

erties can be calculated directly from quantum mechanics. In the majority of

cases, however, such properties are obtained from experimental studies such

as spectral behavior or other devices, but the interpretation is based on quan-

tum mechanics. Statistical mechanics is the branch of science that intercon-

nects these seemingly unrelated disciplines: statistical mechanics interprets

and, as far as possible, predicts the macroscopic properties in terms of the

microscopic constituents.

For the purposes of the course presented in this book, thermodynamics

and statistical mechanics are developed as separate disciplines. Only after

the introduction of the fundamentals of statistical mechanics will the con-

nection be made between statistical mechanics and thermodynamics. As

noted, the laws of (macroscopic) thermodynamics deal with processes not

structures. Therefore, no theory of matter is contained in these laws. Tradi-

tional thermodynamics is based on common everyday experiences. For

example, if two objects are brought in contact with each other, and one feels

hotter than the other, the hotter object will cool while the colder one will

Thermodynamics and Introductory Statistical Mechanics, by Bruno Linder
ISBN 0-471-47459-2 # 2004 John Wiley & Sons, Inc.
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heat up. Because thermodynamics is based on the common experience of

macroscopic observations it has a generality unequaled in science. ‘‘Classical

Thermodynamics,’’ Einstein remarked, ‘‘. . . is the only physical theory of

universal content . . . which . . . will never be overthrown’’ (Schilpp, 1949).

1.1 SCOPE AND OBJECTIVES

Class make-up varies greatly. Some students take this course as part of one-

year course, in preparation for a comprehensive or preliminary exam,

required for a Master’s or Ph.D. degree. Others sign up because they heard

it was a ‘‘snap’’ course. Still others take it because they think, or their major

professor thinks, that it may help them in their research. A course designed

to satisfy all students’ aspirations is difficult, if not impossible. A suitable

compromise is one, which provides a reasonable balance between funda-

mentals and applications, which is the aim of this book.

1.2 LEVEL OF COURSE

Most students are likely to have had previous exposure to thermodynamics

in some undergraduate course, such as physical chemistry, physics, or engi-

neering. The present course is intended to be more advanced from the stand-

points of both principles and applications. The emphasis is on the logical

structure and generality of the subject. All topics of interest cannot possibly

be covered in a semester course; therefore, topics that are likely to have

been adequately treated in undergraduate courses are skipped.

1.3 COURSE OUTLINE

The idea is to proceed from the general to the particular. The following out-

line suggests itself.

Part I: Thermodynamics

A. Fundamentals

1. Basic concepts and definitions

2. The laws of thermodynamics

2.1 Traditional approach

2.2 Axiomatic approach

3. General conditions for equilibrium and stability

2 INTRODUCTORY REMARKS



B. Applications

1. Thermodynamics of (Real) gases, condensed systems

2. Chemical equilibrium

2.1 Homogeneous and heterogeneous systems

2.2 Chemical reactions

3. Phase transitions and critical phenomena

4. Thermodynamics of one- and two-dimensional systems

4.1 Film enlarging

4.2 Rubber stretching

Part II: Introductory Statistical Mechanics

A. Fundamentals

1. Preliminary discussion

2. Maxwell-Boltzmann, Corrected Maxwell-Boltzmann

Statistics

3. Partition Functions

4. Thermodynamic connection

B. Applications

1. Ideal gases

2. Ideal solids

3. Equilibrium constant

4. The bases of chemical thermodynamics

In addition, mathematical techniques are introduced at appropriate times,

highlighting such use as:

1) Exact and inexact differentials (Section 3.3)

2) Partial Derivatives (Section 3.6)

3) Pfaffian Differential Forms (Section 4.6)

4) Legendre Transformation (Section 5.1)

5) Euler’s Theorem (Section 5.7)

6) Combinatory Analysis (Section 13.5)

1.4 BOOKS

Because of the universality of the subject, books on Thermodynamics run

into the thousands. Not all are textbooks, and not all are aimed at a particular

discipline, such as chemistry, physics, or engineering. Most elementary

chemical texts rely heavily on applications but treat the fundamentals lightly.

Real systems (real gases, condensed systems, etc) are often not treated in

any detail. Some books are strong on fundamentals but ignore applications.

BOOKS 3



Other books are authoritative but highly opinionated, pressing for a particular

point of view.

Two chemical thermodynamics books, which discuss the fundamentals in

depth, are listed below.

1. J. de Heer, Phenomenological Thermodynamics, Prentice-Hall, 1986.

2. J. G. Kirkwood and I. Oppenheim, Chemical Thermodynamics, McGraw-Hill,

1961.

Other books that may provide additional insight into various topics are

listed in the Annotated Bibliography on page. . . .

4 INTRODUCTORY REMARKS



PART I

THERMODYNAMICS



CHAPTER 2

BASIC CONCEPTS AND DEFINITIONS

Chapter 2 lists some of the basic concepts used in this book. Other, more

difficult, concepts will be introduced as needed.

There are several approaches to the formulation of (macroscopic) thermo-

dynamics. Most common is the phenomenological approach, based on obser-

vation. A phenomenological theory is one in which initial observations lead to

a law. The law, in turn predicts phenomena, which can be verified by experi-

mentation. Laws are seldom, if ever, formulated in terms of primary measure-

ments because such formulations could lead to cumbersome statements.

Rather, concepts are introduced that, as a result of the primary measurements,

behave in a characteristic way, giving rise to new concepts, in term of which

laws are expressed concisely and take on a simple form. I referred earlier to

the common situation in which a hotter object in contact with a colder could

only cool and not heat up; in a more precise language, this leads to the concept

of entropy, as we shall see. The Second Law of Thermodynamics is then

concisely formulated in terms of the entropy concept.

Laws can be used to predict events not yet measured. However, predic-

tions should not be extrapolated far beyond the domain in which the primary

measurements have been made. For example, extending the laws of

thermodynamics obtained from measurements in a macro system to a micro

system may lead to erroneous conclusions.

Thermodynamics and Introductory Statistical Mechanics, by Bruno Linder
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2.1 SYSTEMS AND SURROUNDINGS

A system is part of the physical world in which one is interested. What is not

the system is the environment or the surroundings. We distinguish between

several types of systems:

1) An isolated system is a system that is totally uninfluenced by the

surroundings. There is no possibility of exchange of energy or matter

with surroundings.

2) A closed system is a system in which energy but not matter can

exchange with the surroundings.

3) An open system is a system in which both energy and matter can

exchange with the surroundings.

Isolated or closed systems are often referred to as bodies. Theorems will

first be developed for isolated and closed systems and later generalized to

open systems.

2.2 STATE VARIABLES AND
THERMODYNAMIC PROPERTIES

For a complete description of a macroscopic body, it is not enough to specify

the identity of the substance. The state of the system must also be specified.

The state is completely defined by the values of the thermodynamic proper-

ties or thermodynamic variables of the system. Thermodynamic properties

(such as temperature, pressure, amount of substance, energy, etc.) are pro-

perties that do not depend on the rate at which something happens. For

example, electric current and thermal conduction are rates and not thermo-

dynamic variables. State variables are fully determined by the values at

present and do not depend on the previous history of the system. In general,

not all variables need to be specified to define the state of the system

because the variables are interdependent and only a small number can be

varied independently. These are referred to as independent variables. The

rest are dependent variables.

The number of independent variables needed to describe a macroscopic

system thermodynamically is generally small, perhaps consisting of half a

dozen or so variables. On the other hand, there is an underlying atomic

structure (see Chapters 13–16 on statistical mechanics), which requires

something on the order of a multiple of Avogadro’s number of coordinates

to fully describe the system mechanically. How is it then that we can char-

acterize the macroscopic behavior thermodynamically in terms of a very

8 BASIC CONCEPTS AND DEFINITIONS



small number of variables? The answer is that in a macroscopic observation

only averages of atomic coordinates are observed. This has the effect of

eliminating most, but not all, coordinates. For example, suppose we want

to measure the length of a side of a crystalline solid by placing it near a ruler

and taking snapshots with a high-speed camera. Even during these rapid

measurements, atoms of the solid undergo billions of vibrations, which

are averaged out in a macroscopic description. The averaged length only

survives.

2.3 INTENSIVE AND EXTENSIVE VARIABLES

Intensive variables or properties are properties that are independent of the

amount or mass of the material. Extensive properties depend on the mass.

But there is more to it. If the system is divided into several parts, the value

of the total extensive property must equal the sum of the values of the parts.

Later (Chapter 5, Section 5.7), intensive and extensive properties will be

discussed from a mathematical point of view.

2.4 HOMOGENEOUS AND HETEROGENEOUS
SYSTEMS, PHASES

If the intensive variables are uniform throughout the system or if the vari-

ables change continuously (as air in a gravitational field), the system is said

to be homogeneous. If some of the intensive properties change discontinu-

ously, the system is said to be heterogeneous. A phase is a homogeneous

subsystem. It is not necessary that all parts of a phase be contiguous. Ice

chunks floating in water, for example, represent a two-phase system. A

system that consists of several phases is obviously heterogeneous.

2.5 WORK

This concept is taken from electromechanics (mechanics, electricity, and

magnetism) and is likely to be familiar from other studies. There are various

kinds of work. All elements of work, dw, can be written as the product of a

generalized force, X, and a generalized displacement, dx. That is, dw ¼ Xdx

(or sum of terms like �iXi dxi).

There is no general agreement regarding the sign of w. Some authors use

the convention that w is positive if done by the system on the surroundings.

Others prefer to take work to be positive if done by the surroundings on the

WORK 9



system. In this course, w is regarded as positive if done on the system by

the surrounding.

Examples of forms of work include the following.

� Pressure-volume or P-V work: dw ¼ �Pex dV, where Pex is the external

pressure and V the volume.

� Gravitational work: dw ¼ mgdh, where m is the mass, g the gravita-

tional constant, and h the height.

� Electrical work: dw ¼ EdQ, where E is the electric potential difference

and Q the charge.

� Wire or rubber stretching: dw ¼ fL, where f is the tensile force and

L the length.

� Surface Enlargement: dw ¼ sdA, where s is the surface tension and A
the area.

In all these examples, the generalized force is the external one (i.e., the

force acting on the system). Only in reversible processes (to be discussed

shortly) are the external and internal forces equal to each other.

2.6 REVERSIBLE AND QUASI-STATIC PROCESSES

Consider a gas in a cylinder fitted with a piston. If the gas is in equilibrium,

its state is determined by a small number of macroscopic variables, such as

pressure, volume, and composition. However, if the piston is in motion, the

pressure varies from point to point. A pressure tensor, rather than a scalar, is

needed to describe the motion. A rigorous treatment of pressure-volume

work is obviously a problem of great complexity. However, there is one

type of process that can be described simply, namely, a process that

changes extremely slowly so that, for all practical purposes, the internal

pressure is infinitesimally less than the external pressure (obviously an idea-

lization!). The system will be effectively in equilibrium, and the internal

pressure will be basically the same as the external pressure. The work can

then be calculated by using the internal pressure, which is generally known

(for example, from an equation of state). This type of transformation, intro-

duced by Carathéodory (1909), is referred to as quasi-static. It cannot be

realized exactly, but it may approximately represent the real situation in

practice.

A concept closely related to the concept of quasi-static transformation is

the concept of reversibility. Before discussing this concept in detail, let us

inquire what some authorities have to say about the relation between the

10 BASIC CONCEPTS AND DEFINITIONS



concept of reversible and quasi-static changes. de Heer (de Heer, 1986)

quotes the following statements from well-established authors:

� ‘‘Quasi-static transitions are, in fact, reversible, but it is by no means

obvious that all reversible transitions are quasi-static.’’ [from H. A.

Buchdahl]

� ‘‘Every reversible process coincides with a quasi-static one.’’ [from

H. B. Callen]

� ‘‘All reversible processes are quasi-static but the converse is not true.’’

[from J. Kestin]

What appears to be the problem, as shown below, is that the terms quasi-

static and reversible are not uniquely defined.

2.6.1 Quasi-Static Process

The most widely used definition of quasi-static process is the one due to

Carathéodory (Carathéodory, 1909), which states that a ‘‘quasi-static pro-

cess is one that proceeds infinitely slowly via a continuous succession of

equilibrium states.’’ The restriction to a continuous sequence of internal

equilibrium state ensures that, for example, in a compression of a gas, the

internal pressure is infinitesimally smaller than the external pressure.

Obviously, this can be true only if there is no friction. Furthermore, by

an infinitesimal change of the forces, the process can be reversed along

exactly the same path. This means that, on completion of the reverse

process, the system is restored to its original values but so is the environ-

ment. Restoration of the system to its original state as well as of the envir-

onment is an essential requirement (see Section 2.6.2 below) of a reversible

process.

Another definition of quasi-static process stipulates that the change pro-

ceeds at an infinitesimally slow rate but not necessarily via a continuous

succession of equilibrium states. Such a process cannot be reversed by an

infinitesimal change of the forces. As an example, consider a system and

its surroundings—initially at finite (not infinitesimally) different tempera-

tures—to be connected by a poorly heat-conducting metal plate. The heat

transfer will proceed infinitely slowly, and the process may be dubbed

quasi-static—but it is not reversible. Once equilibrium has been established,

it is impossible to restore both system and surroundings to their initial states

without producing finite changes. Only if the initial temperature difference

between system and surroundings is infinitesimally small, rather than finite,

will the transformation be reversible or quasi-static in the Carathéodory

sense.

REVERSIBLE AND QUASI-STATIC PROCESSES 11



2.6.2 Reversible Process

So, how does one define a reversible process?

One definition states that a reversible process proceeds along a continu-

ous sequence of internal equilibrium states so it can return along exactly the

same path. This implies that both system and surrounding can be restored

to the initial values. From this point of view, reversible and quasi-static

processes (á la Carathéodory) are the same.

Another definition states that a reversible process is one in which the sys-

tem is taken from state A to state B and returned to state A, not necessarily

along the same path, but along a path such that there are changes in neither

the system nor the surroundings. This definition makes no reference to inter-

mediate equilibrium states.

It has been suggested that the first definition of reversibility be called

retraceable and the second recoverable. de Heer adds, ‘‘No one has proven

that any recoverable process must be retraceable, nor has any one come up

with an example where a recoverable process is not retraceable.’’

It is apparent now why seemingly contradictory statements are made

regarding the relationship between reversible and quasi-static changes.

The same words are used to describe different phenomena.

For the purposes of the course outlined by this book, quasi-static process

will be defined as one that proceeds via a sequence of equilibrium states,

and reversible change will be defined as a change that proceeds along a con-

tinuous sequence of equilibrium states; in addition, the concepts of quasi-

static and reversible processes will be used interchangeably. The concept

of reversibility is important, not only because it enables us, when appropri-

ate, to carry out calculations that would otherwise be difficult, if not impos-

sible, but also because reversibility (or the lack thereof) plays an essential

role in establishing criteria for natural occurring or spontaneous processes,

as will be shown later. Spontaneous processes are irreversible.

Note: When a transition is carried out under quasi-static conditions, the work done by

the surroundings on the system is the maximum work (by our convention) because

the internal pressure differs only infinitesimally from the external one. In an

expansion, the work (again by our convention) is negative and as low as possible;

that is, it is a minimum. Had we adopted the convention that work is positive when

done on the surroundings, the reversible work would have been maximum in an

expansion and minimum in compression. The absolute values of work are always

maximum in a reversible change regardless of convention and regardless of

whether the transition is an expansion or compression.

In an irreversible change, the external pressure in a compression has to

be greater than the internal pressure by a finite amount, since not all work
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energy, w ¼ �
Ð

PextdV, is utilized to compress the gas but some is needed

to overcome friction.

2.7 ADIABATIC AND DIATHERMAL WALLS

These concepts take on an important role in the axiomatic approach to

thermodynamics.

Adiabaic wall or adiabaic boundary is one in which the state of the sys-

tem can be changed only by moving the boundaries (i.e., doing mechanical

work) or by applying an external field.

Diathermal wall or diathermal boundary is one in which the state of the

system can be changed by means other than moving the boundary or by

applying a field.

2.8 THERMAL CONTACT AND THERMAL EQUILIBRIUM

Two other concepts that will be needed to discuss the laws of thermo-

dynamics, in particular the Zeroth and the First Law, are the concepts of

thermal contact and thermal equilibrium.

Thermal contact refers to systems in contact via a diathermal wall. When

objects are brought into thermal contact, the macroscopic properties may

initially change but after some time no further changes will occur.

Thermal equilibrium refers to systems in thermal contact that do not

change with time.
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CHAPTER 3

THE LAWS OF THERMODYNAMICS I

All of us have some intuitive feeling of what is meant by temperature or

heat, but defining them rigorously leaves much to be desired. The difficulties

encountered in defining these concepts have undoubtedly contributed to the

abandonment of the traditional approaches to thermodynamics in favor of

axiomatic ones.

The traditional way to discuss temperature or heat is to first define one of

these concepts and deduce the other from it. Ideally, the definitions should

be in operational terms, that is, in terms of experimental procedures that can

be measured. Attempts to define temperature in terms of heat are bound to

cause difficulties. Normally, heat is not observed directly but inferred from

changes in temperature. Statements such as radiant energy, thermal flow,

heat flow, and so forth are sometimes used to define heat. The definition

of temperature is contingent on knowing what heat is, which is here vaguely

defined and not operationally. The more common, traditional approach is

to define temperature first and heat afterward. In the axiomatic approach,

the definition of heat is not contingent on knowing what temperature is.

It was once suggested that temperature be considered a primary quantity,

like length and time, which cannot be analyzed into something simpler. This

idea is unsatisfactory from the standpoint of statistical mechanics, which

connects the thermodynamic properties to the mechanical, as we shall see

Thermodynamics and Introductory Statistical Mechanics, by Bruno Linder
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later. If temperature were a primary quantity, which cannot be further sim-

plified, the mechanical properties would also have to be described in terms

of the temperature. They are not.

A critical discussion of temperature did not come about until the latter

half of the 19th century. Maxwell made the definition of temperature

contingent on an observation, now often referred to as the Zeroth Law of

Thermodynamics.

3.1 THE ZEROTH LAW—TEMPERATURE

Zeroth Law states that if two bodies are in thermal equilibrium with a third,

they are in thermal equilibrium with each other.

This statement leads directly to an operational definition of temperature,

given below.

Let A be a test body (e.g., a thermometer). Then all bodies in thermal

equilibrium with it are in thermal equilibrium with each other; that is,

they have a property in common. This property is called temperature. We

may characterize the states of all systems in thermal equilibrium by assign-

ing a number. That number represents the temperature. (If this ‘‘proof’’

appears to be less than convincing, a mathematical analysis, given below,

analyzes the concept in greater detail and shows that temperature can be

expressed entirely in terms of the mechanical variables, such as pressure,

volume, etc.)

Consider three systems: A, B, and C. Let the mechanical variables be PA,

PB, PC, VA, VB, and VC, where P is pressure and V is molar volume. If A and C

are connected via an adiabatic wall, four variables (PA, VA, PC, VC) will be

needed to describe the composite system. On the other hand, if A and C are

connected by a diathermal wall and are in thermal equilibrium, not all four

variables will be independent. We can express this interdependency by writing

f1ðPA;VA; PC;VCÞ ¼ 0 or PC ¼ f1ðVA;VC; PAÞ ð3-1Þ

Similarly, if B and C are in thermal equilibrium, we can write

f2ðPB;VB; PC;VCÞ ¼ 0 or PC ¼ f2ðVB;VC; PBÞ ð3-2Þ

If A and B are in thermal equilibrium with C, then by Zeroth Law they are in

thermal equilibrium with each other. We conclude that

f3ðPA;VA; PB;VBÞ ¼ 0 ð3-3Þ

implying that PA;VA;PB, and VB are interdependent.
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From Eqs. 3-1 and 3-2, we obtain

f1ðVA;VC; PAÞ ¼ f2ðVB;VC; PBÞ

implying that a functional relation exists between PA, VA, PB, VB, and VC or

f�3ðPA;VA; PB;VB; VCÞ ¼ 0 ð3-4Þ

How can Equations 3-3 and 3-4 be reconciled? Equation 3-3 indicates that

PA, PB, VA, and VB are interdependent but do not depend on VC. Equation 3-

4 says that the same variables are interdependent but also that they are

dependent on VC. The two equations can be reconciled if we assume that

the functions f1 and f2 have the following general form:

f1ðVA;VC; PAÞ ¼ y1ðVA; PAÞeðVCÞ þ ZðVCÞ ð3-5Þ
f2ðVB;VC; PBÞ ¼ y2ðVB;PBÞeðVCÞ þ ZðVCÞ ð3-6Þ

Thus, f1 ¼ f2 implies the validity of Equation 3-4; it also implies the valid-

ity of Equation 3-3 because when f1 ¼ f2 it is seen that y1(VA,

PA) ¼ y2(VB, PB) ¼ y. We call y the empirical temperature. Thus, for every

system, it is possible to find a function y of the mechanical variables (P and

V) such that when the systems are in thermal equilibrium with one another,

they have the same value of y. (Note that Eq. 3-1, which expresses the

Zeroth Law, is essential to the argument.)

3.2 THE FIRST LAW—TRADITIONAL APPROACH

The traditional approach to the First Law is based on the assumption that the

concepts of work and heat have already been established. The concept of

work is taken from mechanics and will not be belabored here. The concept

of heat, as alluded to before, is best described in terms of temperature

changes. Now that temperature has been defined independently from the

Zeroth Law, the concept of heat can be introduced in a straightforward man-

ner by first defining heat capacity. If a system A, initially at temperature tA,

is brought in thermal contact with system B at temperature tB at constant

pressure and volume and the final temperature at equilibrium is t, then the

ratio of the temperature changes, for infinitesimally small differences,

dtA ¼ t � tA and dtB ¼ t � tB defines the ratio of the heat capacities of the

two systems

ðdtAÞ=ðdtBÞ ¼ �CB=CA ð3-7Þ
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Thus, if a particular value is assigned to one of the heat capacities, the other

is then determined. The heat transfer for A is defined as

dqA ¼ CAdt or qA ¼
ð

CAdt ð3-8Þ

and for B

dqB ¼ CBdt or qB ¼
ð

CBdt ð3-9Þ

The First Law of Thermodynamics then reads (with our adopted sign con-

vention for work)

�E ¼ q þ w for macroscopic changes ð3-10Þ

and

dE ¼ dq þ dw for infinitesimal changes ð3-11Þ

where E is the internal energy.

The symbol �E stands for the energy difference between final and initial

states of the system; that is, �E ¼ EB � EA. Thus, the first statement does

not only imply that the internal energy is the sum of the heat and work ener-

gies, but also that E is a state function; that is, it is independent of the man-

ner in which the state was obtained. The second statement implies that dE is

an exact differential, despite the fact that dq and dw are generally not. (The

distinction between exact and inexact differentials is sometimes denoted by

crossing the d, or by writing a capital D. We will do neither, since dq and dw

are the only inexact differentials used here, and we characterize work and

heat by small letters, in contrast to the internal energy, and other thermody-

namic functions to be introduced later, which we characterize by capital let-

ters. Thus, dq and dw are inexact differentials and path dependent; dE is

exact and path independent.)

The First Law can also be interpreted as a statement of conservation of

energy.1 Whatever the surrounding loses in the form of heat or work, the

system gains in the form of internal energy and vice versa. There is no

way to measure E itself, so this relation cannot be directly verified. What

can be verified is that when a system, initially in a state A, changes to a

state B, the quantity q þ w is path independent, that is, is independent of

1Since the advent of Einstein’s Theory of Relativity, the Conservation Principle should refer not only to

energy but to mass energy. In the absence of nuclear transformation, however, mass plays no role.
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the manner in which the change is brought about. Also, when the system

undergoes a cyclic change, A ! B ! A, then q ¼�w.

3.3 MATHEMATICAL INTERLUDE I: EXACT AND
INEXACT DIFFERENTIALS

The notion of exact differentials plays such an important role in thermody-

namics that it is of utmost importance to know how to manipulate them.

Suppose we are given a differential expression of this form: Mðx; yÞdxþ
Nðx; yÞdy. Is this expression an exact differential? That is, can it be obtained

from a function fðx; yÞ, which is a function of the same variables? If such a

function exists, then

df ¼ ðqf=qxÞy dx þ ðqf=qyÞx dy ð3-12aÞ

and

Mðx; yÞ ¼ ðqf=qxÞy ð3-12bÞ
Nðx; yÞ ¼ ðqf=qyÞx ð3-12cÞ

In other words, M and N are partial derivatives of fðx; yÞ. Thus, if two arbi-

trary functions Mðx; yÞdx and Nðx; yÞdy are combined, it is unlikely that

Equations 3-12b and 3-12c will be satisfied and the combination will

unlikely be an exact differential.

A differential df ¼ Mðx; yÞdx þ Nðx; yÞdy is exact, if any of the following

statements are satisfied:

1) Its integral is path independent, i.e.
Ð B

A
df ¼ fB � fA;

2) The integral along a closed contour is zero, i.e.
Þ

df ¼ 0;

3) ðqM ðx; yÞ=qyÞx ¼ ½qNðx; yÞ=qx	y.

Proof of statement 3 is as follows:

df ¼ Mdx þ Ndy then ð3-13aÞ
q2fðx; yÞ=qyqx ¼ ½q=qyðqf=qxÞy	x ¼ ðqM=qyÞx ð3-13bÞ
q2fðx; yÞ=qxqy ¼ ½q=qxðqf=qyÞx	y ¼ ðqN=qxÞy ð3-13cÞ

The left-hand sides of Equations 3-13b and 3-13c are the same, since they

only differ by the order of differentiation. Therefore, the right-hand sides of

the equations must be equal.
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Proof of statement 2 is mathematically somewhat complicated and will

not be pursued here. Statement 1 follows trivially from statement 2. If df

is integrated from A to B along a particular path and returns from B to A

along a different path, statement 2 requires that the integrals be equal and

opposite. In short, the integrals are independent of path and thus only initial

and final states are important, as exemplified by statement 1.

Example: The differential df ¼ ydx is inexact since the integral depends

on the path, as is obvious from the area under the curve in the diagram

depicted in Figure 3.1a. The same holds true for the function df ¼ xdy

(Figure 3.1b). However, the function df ¼ ydx þ xdy is exact because the

sum of the shaded areas (Figure 3.1c) is independent of the path—the inte-

gration limits only matter. These examples show how two differentials,

which are intrinsically inexact, can add to give a function that is exact.

The First Law of Thermodynamics is a case in point: dq and dw are, in gen-

eral, not exact but dE is always exact.

3.4 THE FIRST LAW—AXIOMATIC APPROACH

In the axiomatic approach, work is assumed to be a well-defined mechanical

concept but heat has yet to be defined. The goal is to define all thermal prop-

erties in terms of mechanical variables. This can be accomplished by

Y

A

X

B

Figure 3.1a Graphical representation of the integral I ¼
Ð

y dx. The shaded area represents

the value of the integral.
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Figure 3.1b Graphical representation of the integral I ¼
Ð

x dy. The shaded area represents

the value of the integral.

Y

A

X

B

Figure 3.1c Graphical representation of the integral I ¼
Ð

(y dx þ x dy). The shaded area

represents the value of the integral.
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appealing to certain observations, such as the Joule (Paddle Wheel)

experiment, which shows that if a system is brought from a state A to a

state B adiabatically, the work is always the same, regardless of path or

source.

Figure 3.2 is a schematic diagram of the Joule Paddle-Wheel experiment.

An adiabatically encased fluid is stirred by a paddle wheel, which rotates

as a result of placing weight on the tray or by some other mechanical device.

The fluid is the system, and the paddle wheel is considered part of the

surrounding. The rotating paddle wheel causes the temperature of the fluid

to rise, thereby altering the state of the system. The change in the state is

determined by observing the change in the temperature. It is found that

the change in teperature, and thus the change in the state of the system, is

independent of the manner in which the transition takes place. It is imma-

terial whether the transition is reversible or irreversible or whether it is pro-

duced by mechanical work or some other kind of work, such as electrical

work.

Because the work in this adiabatic process is found to be independent of

path, the differential dwad must be exact. Furthermore, because it is univer-

sally accepted (or believed) that energy—mass energy, since Einstein—

cannot be created or destroyed, it is natural to assume that the lost adiabatic

work, a form of energy, is transformed into another form of energy, the

Figure 3.2 Joule’s Paddle–Wheel Experiment. The weight in the pan sets the paddle wheel

in motion, producing work on the fluid, which is dissipated as heat causing the temperature to

rise.
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internal energy, E. This energy is a property of the system, a state function,

and must be independent of the manner in which it was created. These state-

ments can be summarized concisely in the form of the First Law, which

reads:

When a system makes a transition from state A to B by adiabatic means the

change in internal energy is

�E ¼ EB � EA ¼ wad ð3-14aÞ

or

dE ¼ dwad ð3-14bÞ

Obviously, the differential dE must be exact, since dwad is exact and �E

must be independent of the path.

What happens if the system is transformed from the same initial state A

to the same final state B by work, w, which is nonadiabatic? There is no

reason to assume that the Equation 3-14a will hold, and in fact

�E ¼ EB � EA 6¼ w ð3-15Þ

To replace the inequality sign by an equal sign, a ‘‘correction’’ factor, q,

must be added

�E ¼ q þ w ð3-16Þ

This correction factor defines the heat. Obviously, q ¼ wad � w. [Actually,

this equation does not really define the concept of heat, but rather the

measure of heat.] In summary,

�E ¼ EB � EA ¼ wad ð3-17aÞ
�E ¼ EB � EA ¼ q þ w ð3-18aÞ

or, in differential form

dE ¼ dwad ð3-17bÞ
dE ¼ dq þ dw ð3-18bÞ

Note: Both�E and q are defined operationally and entirely in terms of the mechanical

quantity work. Furthermore, the notion that the EB � EA is path independent, and

thus that E is a state function, is not a mere assumption but has an experimental

basis.
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Note: The axiomatic approach to the First Law of Thermodynamics tacitly assumes

that it is always possible to reach an arbitrary state B from an arbitrary state A

adiabatically. However, the Second Law of Thermodynamics (as we shall see later)

shows this not to be the case. When it is not possible to reach B from A adiabatically,

one should infer the energy change from the reverse process, namely,

�EB ! A ¼ EA � EB. The forward and reverse energy changes are equal and

opposite. It will be shown later that if a forward process is not possible adiabatically,

the reverse process is possible, although irreversibly. Measuring irreversible work

functions may be very difficult. These difficulties are avoided in the traditional

approach, which makes no use of adiabatic changes.

3.5 SOME APPLICATIONS OF THE FIRST LAW

The treatment here is restricted to reversible processes with no work other

than pressure-volume work. Under these restrictions, Pex ¼ P, and

dq ¼ dE � dw ¼ dE þ PexdV ¼ dE þ PdV ð3-19Þ

3.5.1 Heat Capacity

The heat capacity is defined as

C ¼ lim
ðdT!0Þ

dq=dT ¼ dq=dT ð3-20Þ

In general, C is a function of temperature, mass, pressure, volume, and

other variables. Usually, one or more of the variables are held constant, indi-

cated here by a subscript on C. In particular,

CV ¼ dqV=dT ¼ ðqE=qTÞV ð3-21aÞ
CP ¼ dqP=dT ð3-21bÞ

Cadiabatic ¼ 0 ð3-21cÞ

3.5.2 Heat and Internal Energy

Let us regard E as a function of T and V, i.e., E ¼ E (T, V). Then,

dE ¼ ðqE=qVÞTdV þ ðqE=qTÞVdT ð3-22Þ

and

dq ¼ ½ðqE=qVÞT þ P	dV þ CVdT ð3-23Þ
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For constant temperature (T ¼ TA)

qT ¼
A

ðB

ðqE=qVÞTdV þ
A

ðB

PdV ð3-24Þ

¼ EðTA;VBÞ � EðTA;VAÞ þ
A

ðB

PdV ð3-25aÞ

¼ �E þ
A

ðB

PdV ð3-25bÞ

For constant volume (V ¼ VA)

qV ¼
A

ðB

ðqE=qTÞV ¼ EðTB;VAÞ � EðTA;VAÞ ð3-26aÞ

¼ �E ð3-26bÞ

For constant pressure (PA ¼ PB ¼ P)

qP ¼
A

ðB

dE þ
A

ðB

PdV ¼ EðTB;VBÞ � EðTA;VAÞ þ P�V ð3-27aÞ

¼ �E þ P�V ð3-27bÞ

Note: The symbol � is used extensively in chemical thermodynamics. Usually, the

meaning is clear, but there are times when the notation is ambiguous. For example,

one might conclude from Equations 3-26b and 3-27b that qP ¼ qV þ P�V, which is

wrong. The �E values in the two equations are different, as is apparent when

written in terms of the variables TA, VA, TB, and VB. The E values for the initial

states are the same but not for the final states. Compare Equations 3-25a, 3-26a,

and 3-27a.

3.5.3 Heat and Enthalpy

Equation 3-26b is particularly valuable because it enables one to calculate

�E directly from measured heat changes at constant volume (qV). Unfortu-

nately, most chemical experiments are not done at constant volume but at

constant pressure. Is there a thermodynamic function that relates simply

to heat at constant pressure (qp)? Yes, it is the enthalpy.

The enthalpy is defined as

H ¼ E þ PV ð3-28Þ
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H is a state function (path independent integral) because E and PV are state

functions. If the system is taken from state A to state B,

�H ¼ �E þ�ðPVÞ ¼ EðTB;VBÞ � EðTA;VAÞ þ ðPBVB � PAVAÞ
ð3-29Þ

At constant pressure, PA ¼ PB ¼ P, the right-hand side of the equation is

identical to Equation 3-27a; thus

qP ¼ �H ð3-30Þ

Another way to reach the same conclusion is to observe that at constant

pressure

�H ¼ �E þ�ðPVÞ ¼ q þ w þ P�V ¼ qP � P�V þ P�V ¼ qP ð3-30aÞ

Writing H as a function of T and P shows that

dH ¼ dE þ PdV þ VdP ð3-31Þ
¼ dq � PdV þ PdV þ VdP ¼ dq þ VdP ð3-32Þ

or

dq ¼ dH � VdP ð3-33Þ

Thus, at constant P

CP ¼ dqP=dT ¼ ðqH=qTÞP ð3-34Þ

Similarly, from the expression

dq ¼ dE þ PdV ð3-35Þ

we obtain for constant volume

CV ¼ dqv=dT ¼ ðqE=qTÞV ð3-36Þ

Finally, the reader is reminded that the relations between qv and �E and

between qP and �H are not general; rather, the relations are predicated

on the assumptions that there is no work other than PV work and that the

process is reversible.
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3.6 MATHEMATICAL INTERLUDE II:
PARTIAL DERIVATIVES

The partial derivative relations that are used most frequently for the pur-

poses of the course outlined in this book are derived here. They are of

two types: (1) relations between partials of dependent variables and (2) rela-

tions between partials with different subscripts.

3.6.1 Relations Between Partials of Dependent Variables

Consider three interrelated variables x, y, and z. If z is treated as a function

of x and y, that is z ¼ zðx; yÞ, then

dz ¼ ðqz=qxÞydx þ ðqz=qyÞxdy ð3-37Þ

However, if y is taken to be a function of x and z: y ¼ yðx; zÞ, then

dy ¼ ðqy=qxÞzdx þ ðqy=qzÞxdz ð3-38Þ

Substituting Eq. 3-38 in Eq. 3-37 gives

dz ¼ ½ðqz=qxÞy þ ðqz=qyÞxðqy=qxÞz	dx þ ðqz=qyÞxðqy=qzÞxdz ð3-39Þ

Equating the coefficients of the differentials yields

1 ¼ ðqz=qyÞxðqy=qzÞx ð3-40aÞ

or

ðqz=qyÞx ¼ 1=ðqy=qzÞx ð3-40bÞ

and

ðqz=qxÞy þ ðqz=qyÞxðqy=qxÞz ¼ 0 ð3-41aÞ

or

ðqy=qxÞz ¼ �ðqz=qxÞy=ðqz=qyÞx ð3-41bÞ

or

ðqz=qxÞyðqx=qyÞzðqy=qzÞx ¼ �1 ð3-41cÞ
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3.6.2 Relations Between Partials with Different Subscripts

Consider a function � of x and y, i.e. �¼ �(x,y). The differential is

d� ¼ ðq�=qxÞydx þ ðq�=qyÞxdy ð3-42aÞ

But � can be regarded also a function of z and y. Thus, differentiating d� in

Equation 3-42a with respect of y, holding z constant, gives

ðq�=qyÞz ¼ ðq�=qyÞx þ ðq�=qxÞyðqx=qyÞz ð3-42bÞ

The latter equation is particularly useful in relating partials such as (qE/qT)P

to (qE/qT)V etc.

3.7 OTHER APPLICATIONS OF THE FIRST LAW

The following applications are intimately based on the mathematical tech-

niques outlined in Section 3.6 and are useful exercises of those techniques.

3.7.1 CP � CV

In addition to mathematical formulas developed in the previous section, we

shall also make use of the so-called thermodynamic equations of state, to be

derived later, namely

ðqE=qVÞT ¼ TðqP=qTÞV � P ð3-43Þ
ðqH=qPÞT ¼ V � TðqV=qTÞP ð3-44Þ

From the definitions of CP and CV in Equations 3-34 and 3-36, we obtain

CP � CV ¼ ðqH=qTÞP � ðqE=qTÞV

¼ ðqE=qTÞP þ PðqV=qTÞP � ðqE=qTÞV ð3-45aÞ
¼ ðqE=qTÞV þ ½ðqE=qVÞTðqV=qTÞP	 þ PðqV=qTÞP

� ðqE=qTÞV ð3-45bÞ
¼ ½ðqE=qVÞT þ P	ðqV=qTÞP ð3-45cÞ

and using Equation 3-43, gives

CP � CV ¼ TðqP=qTÞVðqV=qTÞP ð3-46Þ
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Finally, using the coefficient of thermal expansion,

a ¼ 1=VðqV=qTÞP ð3-47aÞ

and the compressibility,

k ¼ �1=VðqV=qPÞT ð3-47bÞ

yields

CP � CV ¼ TV a2=k ð3-48Þ

Eqs. 3-46 and 3-48 are general. For 1 mol of an ideal gas, PV ¼ RT, and

CP � CV ¼ R ð3-49Þ

3.7.2 Isothermal Change, Ideal Gas (1 mol)

ðqE=qVÞT ¼ TðqP=qTÞV � P ¼ TR=V � P ¼ 0 ð3-50aÞ

At constant temperature, �E ¼ 0, and

q ¼ �w ¼
1

ð2

PdV ¼ RT
1

ð2

dV=V

¼ RT ln V2=V1 ¼ RT ln P1=P2 ð3-50bÞ

3.7.3 Adiabatic Change, Ideal Gas (1 mol)

dq ¼ dE � dw ¼ CV dT þ PdV ¼ 0 ð3-51aÞ

CV dT=T þ R dV=V ¼ CV d ln T þ Rd ln V ¼ 0 ð3-51bÞ

Using Eq. 3-49 and replacing CP/CV by g, we get, after integration

ln T2=T1 þ ðg� 1Þ ln V2=V1 ¼ 0 ð3-52aÞ

or

ðT2=T1ÞðV2=V1Þ
g�1 ¼ 1 ð3-52bÞ
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If we replace T2/ T1 by P2V2/P1V1, we get

ðP2=P1ÞðV2=V1Þ
g ¼ 1 ð3-53aÞ

Equations 3-52b and 3-53a are often expressed in the form

TV g�1 ¼ const and PV g ¼ const ð3-53bÞ

Another way to obtain Equation 3-53a is to derive it directly from

Equation 3-54, which expresses dq in terms of both CP and CV

dq ¼ CVðqT=qPÞV dP þ CPðqT=qVÞP dV ð3-54Þ

To prove this relation, first consider E to be a function of V and P

dq ¼ dE þ PdV

¼ ðqE=qVÞP dV þ PdV þ ðqE=qPÞV dP

¼ ðqH=qVÞP dV þ ðqE=qPÞV dP

¼ ðqH=qTÞPðqT=qVÞP dV þ ðqE=qTÞVðqT=qPÞV dP

¼ CPðqT=qVÞPdV þ CVðqT=qPÞV dP

For 1 mol of an ideal gas (qT/qV)P ¼ P/R and (qT/qP)V ¼ V/R and in an

adiabatic transition

P CPdV þ V CVdP ¼ 0 ð3-55Þ

yielding

ð1=VÞðCP=CVÞdV þ dP=P ¼ gdlnV þ dlnP ¼ 0 ð3-56Þ
ðV2=V1Þ

gðP2=P1Þ ¼ 1 or PV g ¼ const ð3-57Þ

which are the same as Equations 3-53a and 3-53b.

3.7.4 The Joule and the Joule-Thomson Coefficients

The Joule Coefficient is defined as

mJ ¼ ðqT=qVÞE ð3-58Þ

Obviously,

mJ ¼ �ðqE=qVÞT=ðqE=qTÞV ¼ �ðqE=qVÞT=CV ð3-59Þ
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Joule measured the change in temperature when a gas, adiabatically

enclosed, is allowed to expand into a vacuum. Because, in this experiment,

both w (expansion into a vacuum) and q (adiabatic expansion) are zero, so

must be �E; hence, the constancy of E in Eq. 3-58. Joule found that there

was no noticeable change in T in this expansion and concluded (e.g., see

Eq. 3-59) that (qE/qV)E ¼ 0, in other words that the energy of the gas

was independent of the volume. This is approximately true for very dilute

gases; it is exact for ideal gases but not for real gases. For example, it will be

shown later that for a van der Waals gas, (qE/qV)T ¼ a/V 2, where a is one of

the van der Waals constants, and thus the Joule coefficient cannot strictly be

zero. Joule’s experiment was rather crude.

The Joule-Thomson Coefficient is defined as

mJT ¼ ðqT=qPÞH ð3-60Þ
which yields

mJT ¼ �ðqH=qPÞT=ðqH=qTÞP ¼ �ðqH=qPÞT=CP ð3-61Þ

In this experiment, a gas is slowly forced through a porous plug from

chamber 1 to chamber 2. The pressures of chamber 1 and chamber 2 are,

respectively, P1 and P2 and are kept constant during the operation. The

volume of chamber 1 changes from V1 to 0 and the volume of chamber 2

changes from 0 to V2 (see Figure 3.3). The system is adiabatically enclosed.

The overall change in this experiment is

�E ¼ E2 � E1 ¼ w ¼ �
1

ð2

PdV ¼ P1V1 � P2V2 ð3-62Þ

Thus,

E1 þ P1V1 ¼ E2 þ P2V2 ð3-63Þ
or

H1 ¼ H2 ð3-64Þ

porous plug

P1 P1 P1P2

T1 T2

V1 V2

Figure 3.3 The Joule-Thomson Experiment. A gas at constant P1, V1, and T1 in the

adiabatic container on the left is forced through porous plug to the adiabatic chamber on the

right, maintained at constant P2, V2, and T2. The entire device is thermally insulated.
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showing that H is constant in the process, as indicated in the definition of the

Joule-Thomson coefficient. In the Joule-Thomson experiment, the tempera-

ture is observed to change with pressure and has been used to liquefy gases.

Note: The Joule-Thomson procedure does not always result in cooling. For cooling to

occur, (qH/qP)T has to be negative (why?); for most gases at ordinary temperatures

it is. However, there are exceptions: H2 and He heat up at room temperature. With

the use of the virial form of the equation of state (Chapter 8), it is easy to show that

(qH/qP)T ¼ b � 2a/RT for a van der Waals gas, and obviously this derivative can be

positive or negative, depending on the temperature and the van der Waals constants.

The temperature for which the partial (qH/qP)T is zero is called the inversion

temperature (Ti). Thus, (qH/qP)Ti ¼ 0.

EXERCISES

1. The van der Waals constants a and b for N2 are, respectively, 1.390

L2 �atm and 0.03913 L/mol. Calculate the inversion temperature (Ti).

2. Repeat the calculation for He. The van der Waals constants a and b are

respectively 0.03142 L2 �atm and 0.02370 L/mol.
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CHAPTER 4

THE LAWS OF THERMODYNAMICS II

4.1 THE SECOND LAW—TRADITIONAL APPROACH

Some processes occur spontaneously, others do not. For example, if system

A is hotter than B and A and B are in thermal contact, heat will flow from A

to B. The opposite—heat flowing from B to A—does not occur, at least not

spontaneously, although that would not violate the First Law. In chemical

reactions, certain reactions proceed spontaneously, whereas others do not.

In general, reactions will go spontaneously if the sum of the enthalpies of

the products is less than the sum of the enthalpies of the reactants, i.e., if

�Hrec is negative (exothermic!). However, there are exceptions. Liquids

will generally mix when the enthalpy of mixing (�Hmix) is negative but

there are liquids (benzene and toluene, for example) that mix readily

when �Hmix>0. Obviously, the requirement that the final enthalpy be less

than the initial is not sufficient to serve as a criterion for spontaneity. The

same can be said about the internal energy (E). It turns out that many phy-

sical phenomena cannot be explained on the basis of the First Law alone;

thus a new law—the Second Law—is needed.

In Chapter 4, we will first discuss the Second Law based on the Tradi-

tional Approach. We will then present a nonrigorous treatment of the Axio-

matic Approach introduced by Carathéory. The usual development of the
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traditional approach starts with statements (called Principles) by Clausius or

by Kelvin-Planck.

The Clausius Principle states that it is not possible to devise an engine

(operating in a cycle) that has the sole effect of transferring heat from a

colder body to a hotter body (i.e., without at the same time converting a

certain amount of heat into work).

The Kelvin-Planck Principle states that it is not possible to devise an

engine (operating in a cycle) that has the sole effect of extracting heat

from a heat reservoir and converting it all into work (i.e., without at the

same time transferring heat from a hotter to colder body).

It can be shown that, as a consequence of one or the other of these prin-

ciples, a system must posses a property, which is a state function—called the

entropy—whose differential is related to the reversible heat exchanged

divided by the temperature, namely dS ¼ dqrev/T. Another consequence is

that the entropy of an isolated system can never decrease.

The standard way of proving those statements is by means of Carnot

cycles. The Carnot cycle is a reversible cycle consisting of two (reversible)

isotherms and two (reversible) adiabats. There are two heat reservoirs, one

at the empirical temperature y2 and one at the temperature y1. Basically, a

gas is allowed to expand isothermally and reversibly at the higher tempera-

ture y2, followed by an adiabatic expansion to the lower temperature y1.

This is followed by an isothermal compression at y1 and finally by an adia-

batic compression to y2 (see Figure 4.1). Heat is extracted from the reservoir

at the higher temperature, y2, and released at the lower temperature, y1.

During this process, work is done on the surroundings.

It is convenient to represent the heat engine as in the diagram in

Figure 4.2. The quantities q2 and q1 represent the heats exchanged

V1

V2θ2

θ1

isotherm

isotherm

adiabat

V2
′

V1
′

V

P

adiabat

Figure 4.1 Carnot Cycle. The curves represent two isotherms and two adiabats. The upper

isotherm is at a higher temperature.
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respectively at y2 and y1, and q may have either a positive or a negative

value, depending on whether heat is absorbed or emitted. (In a heat engine,

q2 will be positive and q1 negative.) The arrow in Figure 4.2a serves to

denote that the cycle runs in a forward direction, as the Carnot cycle

depicted in Figure 4.1. The efficiency of an engine is defined as the work

done by the engine in a complete cycle divided by the heat absorbed at

the higher temperature reservoir; that is

x ¼ �w=q2 ð4-1Þ

The work done by the system on the surroundings must be represented as

�w, because, by our convention, w represents the work done on the system.

Note that, in the cyclic process, �E ¼ q þ w ¼ 0, since the system returns

to its origin and E is a state function. Accordingly, the overall heat

q ¼ q1 þ q2 ¼ �w must be positive, since �w represents the work done

on the surroundings and thus is positive. Replacing �w by q1 þ q2 in

Equation 4-1 yields

x ¼ ðq1 þ q2Þ=q2 ¼ 1 þ q1=q2 ð4-2Þ

To proceed, we make use of a theorem, from Carnot, that is essential to the

traditional development of the Second Law of Thermodynamics. Carnot’s

Theorem states that Carnot cycles operating reversibly between the same

temperatures have the same efficiency.

To prove this, we assume that there is an engine operating between the

temperatures y2 and y1 which has an efficiency x� greater than x. We show

Reservoir

Reservoir

θ2

θ1

q2

q1

Figure 4.2a Schematic representation of a Carnot cycle running in a clockwise direction

and transferring heat from the high temperature reservoir to the lower one.
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that this assumption violates both the Clausius and the Kelvin-Planck

Principles.

First let us consider the Clausius Principle. The assumption x�> x leads

to the supposition that

�w�=q�
2 > �w=q2 ð4-3Þ

Let us, for simplicity, adjust the two engines in such a way that �w� ¼
�w. Then, 1=q�2 > 1=q2 and therefore 1=q�1 < 1=q1. We now couple the two

engines (see Figure 4.2b), running the starred-engine in the forward direc-

tion (clockwise) and the nonstarred engine in the reverse direction (counter-

clockwise). The heat changes in the reverse direction are opposite to what

they would have been in the forward direction. Thus, the heat changes of the

reverse engine are �q2 and �q1. We conclude that at the high temperature

the overall heat transferred is q�
2 � q2 < 0, i.e., heat is released and at low tem-

perature q�1 � q1 > 0, i.e., heat is absorbed, in violation of the Clausius Principle.

If we use the Kelvin-Planck Principle and again assume that x�> x or that
�w�

q�
2

> � w
q2

and adjust the systems so that q�2 ¼ q2, we find that �w� > �w

or q�2 þ q�
1 > q2 þ q1 so that q�

1 > q1. Again, if we run the starred engine in

a forward direction and the nonstarred one in the reverse direction (where at

y1 the heat evolved is �q1), we find that at the high temperature q�
2 � q2 ¼ 0

and at the low temperature q�1 � q1 > 0. The overall work is w� � w < 0.

The net result is that heat is converted entirely into work without the

transfer of heat from the hotter to the colder reservoir—in violation of the

Kelvin-Planck Principle. Thus, both the Clausius Principle and the Kelvin-

Planck Principle establish the validity of Carnot’s Theorem.

The next obvious step is to calculate the efficiency of a particular system.

If we know it for one system, then we know it for all. The easiest thing to do

is to determine the efficiency of an ideal gas, as is done typically in elemen-

tary physical chemistry (and summarized in Section 4.2.1). The ideal gas

law is used to relate the engine efficiency to the absolute temperature. How-

ever, this is not necessary. It is possible to obtain the absolute temperature

q*2

θ2 θ2

θ1θ1

q*1

q2

q1

Figure 4.2b Schematic representation of two coupled Carnot engines. The starred cycle

runs in the forward direction (clockwise); the unstarred runs in the reverse direction (counter-

clockwise).
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directly from the heat relations of coupled engines (Section 4.2.2) and there-

by avoid the use of the ideal gas or any other system for that matter.

4.2 ENGINE EFFICIENCY: ABSOLUTE TEMPERATURE

4.2.1 Ideal Gas

In elementary treatments, the temperature is usually taken to be defined by

the ideal gas law. Referring to Figure 4.1 and replacing the reservoir tem-

peratures y2 and y1 by T2 and T1, we obtain for the sequence

(V1,T2) ! (V2,T2) ! (V0
2, T1) ! (V0

1, T1) ! (V1, T2)

q2 þ q1 ¼ RT2 ln V2=V1 þ RT1 ln V
0
1=V

0
2 ð4-4Þ

which, by applying (Eq. 3-52b) to the adiabats gives V2=V0
2 ¼ V1=V0

1 or

V2=V1 ¼ V0
2=V0

1 and so

e ¼ �w=q2 ¼ 1 þ q1=q2

¼ ½RT2 lnðV2=V1Þ � RT1 lnðV2=V1Þ
=RT2 lnðV2=V1Þ ð4-5Þ
¼ 1 � T1=T2 ð4-6Þ

which gives

q1=T1 þ q2=T2 ¼ 0 ð4-7Þ

4.2.2 Coupled Cycles

The extremely simple derivation shown in Section 4.2.1 is based on the

properties of an ideal gas. Avoiding the use of an ideal gas (or any other

system), we must first define the absolute temperature. This is done by

considering two coupled Carnot cycles arranged as in the diagram of Fig-

ure 4.3. The empirical temperatures of the heat reservoirs are in the order

y3 > y2 > y1. Engine A absorbs from the reservoir at y3 an amount of

heat, q3, and emits an amount q�
2 to reservoir y2. Engine B absorbs an

amount of heat q2 at y2 and emits an amount q1 at y1. Figure 4.3 represents

q�2 ¼ �q2.

The efficiency of A, xA ¼ 1 þ q�2=q3, depends only on y2 and y3 and so

�q�2=q3 ¼ 1 � xA ¼ fðy2; y3Þ ð4-8Þ

Similarly, the efficiency of B, xB ¼ 1 þ q1/q2 and so

�q1=q2 ¼ 1 � xB ¼ fðy1; y2Þ ð4-9Þ
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If we consider the coupled engine as a single unit, operating between y3 and

y1, the efficiency would be xAB ¼ 1 � q1/q3 and thus

�q1=q3 ¼ 1 � xAB ¼ fðy1; y3Þ ð4-10Þ

Accordingly, we can write

�q1=q3 ¼ ð�q1=q2Þðq2=q3Þ ¼ ð�q1=q2Þð�q�2=q3Þ
¼ fðy1; y2Þfðy2; y3Þ ð4-11Þ

and, using Equations 4-9 and 4-10, we can obtain

fðy1; y2Þ ¼ fðy1; y3Þ=fðy2; y3Þ ð4-12Þ

Because the left-hand side of Equation 4-12 is independent of y3 but is

always equal to the right-hand side, which depends on y3, the function

f(y1,y2) must be of the form

fðy1; y2Þ ¼ Tðy1Þ=Tðy2Þ ð4-13Þ

where T is a universal function of the empirical temperature (y) and inde-

pendent of the substance. We define T(y2) ¼ T2, etc., and call it the absolute

temperature. Thus, from Eqs. 4-9 and 4-13, we obtain

�q1=q2 ¼ T1=T2 ð4-14Þ

and, operationally, the ratio T1/T2 can be obtained from �q1/q2. To deter-

mine the absolute scale unambiguously, Kelvin suggested taking the differ-

ence between the boiling point of water [Tbp(H2O)] and the freezing point of

q3

q2

q2

q1

*

θ3

θ1

θ2

Figure 4.3 Schematic representation of two coupled Carnot cycles transferring heat from

reservoir at y3 to y2 and from y2 to y1.

ENGINE EFFICIENCY: ABSOLUTE TEMPERATURE 37



water [Tfp(H2O)] and setting it equal to 100. This gives the Kelvin scale the

same size as the Celsius scale.

Finally, rearranging Equation 4-14 gives

q2=T2 þ q1=T1 ¼ 0 ð4-15Þ

which is the same as Equation 4-7 but is obtained here without recourse to

an ideal gas or any other substance. Equation 4-15 is fundamental to (rever-

sible) Carnot cycles and essential for further development of the subject.

4.3 GENERALIZATION: ARBITRARY CYCLE

The above result obtained for a reversible Carnot cycle can be generalized to

an arbitrary cycle. To accomplish this, we suppose that, when the system

traverses the cyclic path, it exchanges heat with a series of reservoirs at tem-

peratures T1, T2, etc. We replace the reversible cycle by a sum of small

Carnot cycles (as shown in Figure 4.4), each of which operates quasi-

statically. It is seen that, when all the small Carnot cycles are completed,

each adiabat has been traversed twice, once in the forward direction and

once in the reverse direction, effectively cancelling each other. What

remains is the heat exchange of the outer path. Denoting the heat exchanges

by the small cycles dqi, the net result for the arbitrary reversible path is

�idqi=T ¼ 0 ð4-16Þ
and, in the limit as dqi ! 0

þ
dqrev=T ¼ 0 ð4-17Þ

This clearly shows that dqrev/T is an exact differential.

P

ν

Figure 4.4 Schematic representation of an arbitrary reversible cycle as a sum of Carnot

cycles.
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4.4 THE CLAUSIUS INEQUALITY

Let us return to the discussion of the efficiency of the Carnot cycle. We saw

that, if we coupled the (assumed) more efficient starred (�) cycle to the lesser

efficient one and ran the starred cycle in a forward direction and the

unstarred in a reverse direction, we arrived at a contradiction of the Clausius

Principle. We concluded that the supposition that the starred cycle is more

efficient than the unstarred one is wrong and that x� cannot be greater than x.

But can it be less than x? Not if the starred cycle is reversible. If so, we

could run the unstarred cycle in a forward direction and the starred cycle

in a reverse direction and arrive at the same contradiction. Therefore, if

both engines are capable of performing in forward and reverse directions,

i.e., if both engines are reversible, they must have the same efficiency.

But what if the starred engine is irreversible? (The unstarred engine runs

a Carnot cycle and is always reversible!) Then, the starred engine cannot

be coupled to the unstarred one in a reverse direction, and the efficiency

x� cannot be greater than or equal to that of the reversible engine: In short,

x� must be less than x.

In summary, because x ¼ 1 � T1/T2 it follows that x� < 1 � T1/T2 and

thus for the irreversible case

1 þ q1=q2 < 1 � T1=T2

or

q1=T1 þ q2=T2 < 0 ð4-18Þ

For an arbitrary irreversible cycle, taken along a closed contour,Þ
dqirrev=T < 0. We may combine the results for the reversible and irrever-

sible cycles by writing

þ
dq=T � 0 ð4-19Þ

where the ¼ sign refers to a reversible cycle and the < sign to an irreversible

cycle. Equation 4-19 is known as the Claudius Inequality. As stated earlier,

because
Þ

dqrev=T ¼ 0, the differential dqrev/T is an exact differential, sug-

gesting the existence of a property of the system, which is a state function,

called the entropy and denoted as S, whose differential is related to the

element of reversible heat

dS ¼ dqrev=T ð4-20aÞ
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Also, the integral between two states is path independent

�S ¼
A

ðB

dqrev=T ¼ SB � SA ð4-20bÞ

If dq is not reversible, we can construct a cyclic process, which proceeds

from A to B irreversibly and returns from B to A by a reversible path (see

Figure 4.5). Because part of the cycle is irreversible, the overall cycle is irre-

versible and thus

þ
dq=T ¼

A

ðB

dqirr=T þ
B

ðA

dqrev=T < 0 ð4-21aÞ

or

A

ðB

dqirr=T < �
B

ðA

dqrev=T ð4-21bÞ

or

A

ðB

dqirr=T <
A

ðB

dqrev=T ð4-21cÞ

We conclude that

�S ¼ SB � SA >
A

ðB

dqirr=T ð4-22Þ

For an isolated (adiabatic) system undergoing an irreversible change,

dqirr ¼ 0 and �Siso > 0. In general, for an isolated system (reversible or irre-

versible), we can write

�Sisolated system � 0 ð4-23Þ

A

B

Figure 4.5 Schematic diagram of a cyclic process, representing a reversible path from B to

A (smooth curve), and an irreversible path (zigzag curve) from A to B.
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where the ¼ sign refers to the reversible transformation and the > sign to the

irreversible one.

This is an important conclusion. It says that the entropy of an isolated

system can never decrease: if the system undergoes a reversible change, its

entropy stays the same; if the change is irreversible, the entropy must

increase. Because all spontaneous or naturally occurring processes are

irreversible (as mentioned before), this statement provides a clue on how

to distinguish between a process in equilibrium and a spontaneous process.

4.5 THE SECOND LAW—AXIOMATIC APPROACH
(CARATHÉODORY)

Traditional approaches to the Second Law of Thermodynamics based on

the Clausius or the Kelvin-Planck Principle have been criticized by a

some scholars [for example, see Max Born, (1921)] that such important

concepts as entropy should come about as an addendum to a discussion

of heat engines. Some individuals objected to the use of reversible Carnot

cycles, because of the implication of frictionless pistons, infinite heat reser-

voirs, and so forth. Although these are part of the environment and not the

system, to the mathematician. Carathéodory arguments based on Carnot

cycles were unsatisfactory.

Here, we give a brief sketch of Carathéodory’s Axiomatic approach to the

Second Law. This approach is based on two statements: ‘‘Carathéodory’s

Principle’’ and ‘‘Carathéodory’s Theorem.’’ Carathéodory’s Principle is a

statement that must be accepted without proof, like the Clausius or

Kelvin-Planck Principle. Carathéodory’s Theorem is a mathematical theorem

that can be proved (and was proved by Carathéodory!). The theorem is

mathematically involved and will not be developed here. Rather, we will

discuss the theorem in sufficient detail to highlight the arguments that

lead to the concept and properties of entropy.

Carathéodory’s Principle states the following: in the neighborhood of any

given state of a thermodynamic system, there exist states that cannot be

reached from it by any quasi-static adiabatic process. (This is also called

the Principle of Adiabatic Inaccessibility.)

It may seem strange, but this principle can be shown to be consistent with

predictions based on the Clausius Principle or the Kelvin-Planck Principle.

To show this, consider a system with states whose generalized coordinates

are y (the empirical temperature) and X (an extensive coordinate, such as the

volume, V). Figure 4.6 depicts two (reversible) isotherms and two (reversi-

ble) adiabats. It is assumed (consistent with X ¼ V) that in the transition

10 ! 1 heat is absorbed. We assert that 20 cannot be reached from 1 by
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an adiabatic process. To show this, assume that 20 is accessible adiabatically

from 1. Then, in the cycle 1 ! 20 ! 10 ! 1, �E ¼ 0 and q ¼ q1!20 þ
q20!10 þ q10!1 ¼ 0 þ 0 þ q10!1 > 0. Therefore, w must be negative. In other

words, heat is converted entirely into work without other changes, in viola-

tion of the Kelvin-Planck statement. Thus, the supposition that B can be

reached from A adiabatically is false. In fact, all points to the left of the

adiabat through 1 are inaccessible adiabatically from 1. Points to the right

of the adiabat 1 ! 2 can be reached adiabatically, but the process must be

irreversible. Consider cycle 1 ! 200 ! 2 ! 1. Here, q ¼ 0 þ q200!2 þ 0 < 0

and therefore, w > 0, indicating that work is done on the system and con-

verted entirely into heat, which is no violation of the Kelvin-Planck Princi-

ple. However, the path 1 ! 200 must be irreversible. If the path were

reversible, the steps could be retraced along the path 1 ! 2 ! 200 ! 1,

which will produce the inequalities q > 0 and w < 0 in violation of

Kelvin-Planck. The conclusions reached so far apply equally well to sys-

tems of more than two variables. If a system is dependent on y and on

more variables than X, the adiabatic lines will have to be replaced by multi-

dimensional surfaces parallel to the y-axis. The inaccessible region will be a

multi-dimensional volume, etc. The region to the left of the adiabatic sur-

face will be inaccessible adiabatically from a point on the surface and the

region to the right of the surface will be accessible but irreversibly.

Recall that in the discussion of the Axiomatic Approach to the First Law

(Section 3-4), the question was raised of whether it is always possible to

reach a state B from A adiabatically. Obviously, in light of the present dis-

cussion, the answer is no! But if B cannot be reached adiabatically from A,

it can be shown that A can be reached adiabatically from B, but only irre-

versibly. Even so, by obtaining the work change from B to A (and thus the

energy change), we obtain in effect the energy change from A to B. Irrever-

sibility does not come into play in the First Law.

1′

2′ 2′′2

1

χ

θ

Figure 4.6 Illustration showing that points to the left of the adiabat 1-2 cannot be reached

from the adiabat in accordance with the traditional approach to the Second Law; points to the

right of the adiabat can be reached but irreversibly.
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Note: It is obvious that two (reversible) adiabats cannot intersect. Once Carathéo-

dory’s Principle is accepted, the concept of entropy can be defined without recourse

to Carnot cycles by using mathematical properties of certain linear differential

equations called Pfaffian expressions, summarized in the following mathematical

interlude.

4.6 MATHEMATICAL INTERLUDE III: PFAFFIAN
DIFFERENTIAL FORMS

A differential expression of the form

dL ¼ �i Xi dxi ð4-24Þ

where Xi is a function of the variables x1, x2; . . . ; xr, is called a Pfaffian

differential form. The equation

dL ¼ �i Xi dxi ¼ 0 ð4-25Þ

is called Pfaffian differential equation. The differential forms are sometimes

exact, although generally they are not.

We consider three special cases.

1) dL is exact. Then

qXi=qxj ¼ qXj qxi for all i; j ¼ 1; 2; . . . ; r ð4-26Þ

2) dL in not exact, but has an integrating factor.

An integrating factor, �(x1, . . . ,xr), is a factor that turns the inexact

differential dL into an exact one, which we represent as ds. Writing

�dL ¼ ds ¼ �ið�XiÞ dxi ¼ �iðqs=qxiÞj6¼i dxi ð4-27Þ

The reciprocity relations require that

qð�XiÞ=qxj ¼ qð�XjÞ=qxi ð4-28Þ

Note: If a Pfaffian expression has an integrating factor, it has an infinite number of

integrating factors.

3) dL is neither exact nor does it have an integrating factor. Most Pfaffian

expressions are of this kind and cannot be used to construct state

functions: The differential dq is an exception.
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4.7 PFAFFIAN EXPRESSIONS IN TWO VARIABLES

These differentials always have an integrating factor. To see this, consider

the differential dL ¼ Xdx þ Ydy. It is assumed that dL is not exact, but it can

be made exact by the integrating factor �(x; y). Thus, the reciprocity relation

q(�X)/qy ¼ q(�Y)/qx must hold, requiring that

�ðqX=qyÞ þ Xðq�=qyÞ ¼ �ðqY=qxÞ þ Yðq�=qxÞ ð4-29Þ

or

�½ðqX=qyÞ � ðqY=qxÞ
 ¼ Yðq�=qxÞ � Xðq�=qyÞ ð4-30Þ

One can always find an integrating factor �(x; y) that satisfies Equation 4-29.

For example, for an ideal gas,

dq ¼ CVðTÞdT þ ðRT=VÞdV

Using Equation 4-29 requires that

�ðqCV=qVÞT þ CVðq�=qVÞT ¼ �R=V þ ½RT=V
ðq�=qTÞV ð4-31Þ

where � is a function of T and V.

The simplest solution to this equation is to take �(T,V) ¼ 1/T, yielding

1=T � 0 þ CV � 0 ¼ R=ðTVÞ þ ½RT=V
ð�1=T2Þ ¼ 0 ð4-32Þ

Thus, 1/T is an integrating factor, and so is any function f (1/T) of 1/T.

This example shows that (1/T)dq is an exact differential and thus may be

used as a basis for defining dS. However, the reasoning is faulty because this

is a special case, namely, an application of a two-dimensional Pfaffian form,

which always has an integrating factor. To serve as a basis for entropy, one

has to show that dq has an integrating factor in any dimension. It happens to

be true for dq, although not generally.

4.8 PFAFFIAN EXPRESSIONS IN MORE THAN
TWO DIMENSIONS

In general, integrating factors in more than two variables do not exist. For

example, even if we limit ourselves to three variables, dL ¼ Xdx þ
Ydy þ Zdz, the treatment would require solving three equations, such as

Eq. 4-30. It would be very rare, indeed, to find a �(x; y; z) for which the

three eqations can be solved simultaneously.
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In summary, Pfaffian differential expressions in two variables have inte-

grating factors, but, when there are three or more variables, the Pfaffian

forms have no integrating factors in general. However, under certain cir-

cumstances, some differential forms can admit of integrating factors, regard-

less of dimensions. How can these differential expressions be identified?

The answer is provided by a Theorem proved by Carathéodory.

4.9 CARATHÉODORY’S THEOREM

If a Pfaffian expression dL ¼�iXi dxi has the property for which, in the

neighborhood of any point P, there are points that cannot be connected to

P along curves that satisfy the equation dL ¼ 0, then the Pfaffian expression

has an integrating factor (in fact, an infinite number of infinite factors). (We

accept this without proof.)

Note: If dL stands for dq and there are points that cannot be reached from P along the

locus dq ¼ 0 (i.e., adiabatic path), then dq has an integrating factor. Carathéodory

assumed this to be the case and postulated this as what is now known as

Carathéodory’s Principle (see Section 4.5).

4.10 ENTROPY—AXIOMATIC APPROACH

We now return to a discussion of the Second Law and the definition of

entropy. First, let us consider reversible processes. In a reversible process,

all external parameters (such as the generalized forces, Xi) that are part of

dw, and so forth, are in effect equal to the internal forces of the system,

defined by the equation of state. From the First Law we obtain

dq ¼ dE � dw ¼ ðqE=qyÞx dyþ �iðqE=qxiÞy dxi � �i Xi dxi ð4-33Þ

where the last term is an expression of the generalized work and y is the

empirical temperature. The first derivative of E is obviously the heat capa-

city (C). Equation 4-33 is of Pfaffian form.

Carathéodory’s Principle tells us that, in the vicinity of any state repre-

sented by a point P, there are states (points) that are inaccessible from P

along the curve dq ¼ 0. Thus, dq has an integrating factor �, which, in

accordance with Carathéodory’s Theorem, turns the inexact differential dq

into the exact differential, ds

�ðy; x1; . . . ; xrÞ dq ¼ ds ð4-34Þ
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In the Axiomatic Approach to the Second Law, as we shall see, � is identi-

fied with 1/ T, where T is the absolute temperature, and the resulting exact

differential, ds, is identified with dS, where S is the entropy.

Before we continue with this discussion, two characteristics of Pfaffian

forms need to be stated (although given without proof). If dL is an exact

differential, or is a differential, ds, made exact by an integrating factor,

then L or s are equal to a constant, defining a family of nonintersecting sur-

faces in the multipledimensional space. One can also prove that if a displa-

cement from a point P on the surface to a neighboring point R satisfies the

Pfaffian equation (dL ¼ 0) or (ds¼ 0), the point R will be on the same sur-

face. Thus, if P is a point on the locus dq ¼ 0 of a reversible adiabat, then a

displacement to a point R along a Pfaffian equation will lie on the same

adiabat.

We now proceed to show that, although � was introduced as a function of

all the variables, y, x1; x2; . . . ; xr, it is, in fact, a function of the empirical

temperature y only when the Pfaffian form is the differential dq. To demon-

strate this, let us divide the system into two parts. The parts have different

mechanical variables x01; x02; . . . and x001; x002; . . . ; and so forth but the same

empirical temperature y. The parts are in thermal equilibrium. By applying

Equation 4-34 separately to the parts, we have

�1ðy; x01; x02; . . . ; x
0
rÞdq1 ¼ ds1 ð4-35Þ

and

�2ðy; x001; x002; . . . ; x00r Þdq2 ¼ ds2 ð4-36Þ

For the combined system

�ðy; x01; x
0
2; . . . ; x001; x002; . . .Þdq ¼ ds ð4-37Þ

Because dq ¼ dq1 þ dq2, we have

��1ds ¼ ��1
1 ds1 þ ��1

2 ds2 ð4-38Þ

which holds for any arbitrary subdivision. This can only happen if �1 and �2

are independent of all the x variables but can depend only on the common

empirical temperature, y. Because �¼ 1/ T, T can also depend only on the

empirical temperature y. Because T is a universal function of y, we need to

determine T for one system (say, an ideal gas) and we will know it for all

systems in thermal equilibrium with it.
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Rewriting Equation 4-34 in terms of S and T and recalling the restriction

to quasi-static processes in Carathéodory’s Principle, we get the familiar

expressions

dS ¼ dqrev=T ð4-39aÞ

or

�S ¼
A

ðB

dqrev=T ð4-39bÞ

Let us look at the second part of the Second Law, namely, that for an iso-

lated system: �S cannot decrease. Consider a system, whose states are

defined by the variables T, S and other parameters, x. Assume, that rever-

sible paths exist between two states (as drawn in Figure 4.7), depicting a

reversible isotherm and a reversible adiabat. The latter must be perpendicu-

lar to the isotherm because dq ¼ TdS ¼ 0. We know from previous discus-

sions that if we make a transition reversibly from point 1 along dq ¼ 0, we

wind up at a point along the adiabat 1 � 2. Only irreversible transformations

could possibly produce larger or smaller S values.

Actually, smaller S values are not possible. Without invoking the

Clausius Principle, let us assume that we have a system that is adiabatically

enclosed and that heat can flow spontaneously from one part of the system

to the other. If T1 is larger than T2, we know from experience that the flow is

from T1 to T2. We assume further that the parts are so large that the tempera-

tures do not change perceptibly during the heat exchange (essentially, that

isotherm

adiabat

1

2

T

S

Figure 4.7 Illustration showing that points to the left of the (reversible) adiabat cannot be

reached from a point on the adiabat. Points along the adiabat and to the right of it can be

reached, showing that, for an isolated system, �S ¼ 0 for a reversible change and �S > 0

for an irreversible change.
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the parts are reservoirs). If �q is the heat lost at T1, obviously þq is the heat

gained at T2. The change in entropy, however, is

�S ¼ �q=T1 þ q=T2 ¼ qðT1 � T2Þ=T1 T2 > 0 ð4-40Þ

Thus, transitions can only be made along the adiabat or to the right of the

adiabat. Points to the left are inaccessible.

4.11 ENTROPY CHANGES FOR NONISOLATED SYSTEMS

Let us now look at entropy changes for nonisolated systems. Let a be a sys-

tem, which is not isolated, and b the surroundings. Together, they constitute

an isolated system. We assume that a undergoes an irreversible change and

that b is so large that changes are virtually imperceptible and can be

regarded as reversible. Because the overall process is irreversible, we

must have �Saþ�Sb> 0, or

�Sa > ��Sb ð4-41aÞ

��Sb ¼ �
A

ðB

dqb=Tb ð4-41bÞ

Because the overall system is isolated, dqa¼�dqb and

�Sa >
A

ðB

dqa=Tb ð4-41cÞ

We may combine Equations 4-39b and 4-41c into a single formula

�S �
A

ðB

dq=Tb ð4-42aÞ

where the > sign refers to an irreversible transition and the ¼ sign to a rever-

sible transition. The element of heat dq is the heat absorbed by the system,

but the temperature Tb is the temperature of the surroundings. In a reversible

change, there is no difference between the temperature of the system and of

the surroundings, however, in an irreversible process, the temperatures are

different, and, in fact, the temperature of the system is not well defined.

Equation 4-42a is most useful when applied to an isolated system or to

the entire universe, treated as an isolated system, because dq ¼ 0 and

�Sisolated system � 0 ð4-42bÞ

which is the same as Equation 4-23.
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Note: Statements like Equation 4-42b led Clausius to assert that ‘‘The energy of the

universe remains constant, the entropy of the universe tends to a maximum.’’ This

statement, sometimes referred to as the theory of the thermal death of the universe,

was vehementally criticized by some scientists in the former Soviet Union. Some

Scientists objected to extending thermodynamics, which is based on observations

in a finite world, to an infinite world—in other words, to extending the subject

beyond its proper domain. The theory of thermal death was attacked also on

ideological ground. Bazarov (1964) asserted that the theory of the thermal death

would ‘‘lead to religious superstition,—to the belief in God.’’

In chemical thermodynamics, the entropy of the system and its surround-

ings are often combined, simply because a numerical value can be assigned

to the total and can readily be used to ascertain whether a process is rever-

sible or irreversible. If the change is reversible, the total entropy is zero; if it

is irreversible, the total entropy is greater than zero.

As an example, the transformation of supercooled water to ice, to be

discussed shortly, is an irreversible process, but the entropy change is not

positive, as might have been surmised. By adding the entropy of the sur-

roundings, the total change becomes positive.

4.12 SUMMARY

We presented two approaches to the Second Law of Thermodynamics:

traditional and axiomatic. Both approaches made use of statements that

can be proved (theorems!) and statements that must be accepted without

proof (principles!). The main objective of all of this is to develop the con-

cept of entropy logically and rigorously. Not all steps in this development

can be proved—some have to be postulated—thus the question arises:

Why not postulate from the beginning all that is known about entropy, its

existence, the properties, and so forth and circumvent even the mention of

Carnot cycles or inaccessible adiabatic states? A number of such postula-

tional approaches have been advanced. Here is one:

There exists a function, S, called the entropy, which is a state function. Its

differential is related to the reversible heat, dS ¼ dqrev/T. For an isolated sys-

tem, �S � 0, where the ¼ sign refers to a reversible transition and the > sign

to an irreversible transition. This approach is no less fundamental or less logi-

cal than the traditional or axiomatic approaches. However, it postulates the

existence and behavior of entropy not based on intuition or everyday experi-

ence. Contrast this to the other approaches. The Clausius Principle, for exam-

ple, without its trimmings, asserts that heat cannot of itself flow from a colder

to a hotter body, which is an experience common to all. The inaccessibility of

some adiabatic states demanded by Carathéodory’s Principle is not commonly

experienced, but it is a statement consistent with the Clausius Principle.

SUMMARY 49



4.13 SOME APPLICATIONS OF THE SECOND LAW

4.13.1 Reversible Processes (PV Work Only)

dS ¼ dqrev=T

¼ dE=T þ ðP=TÞdV

¼ 1=TfðqE=qTÞV dT þ ½ðqE=qVÞT þ P
dVg ð4-43Þ
¼ ðCV=TÞdT þ 1=T½ðqE=qVÞT þ P
dV ð4-44Þ

Thus

ðqS=qTÞV ¼ CV=T ð4-45Þ

ðqS=qVÞT ¼ 1=T½ðqE=qVÞT þ P
 ¼ ðqP=qTÞV ð4-46Þ

upon applying the Thermodynamic Equation of State, (qE/qV)T ¼ T(qP/

qT)V � P

Also,

ðq2P=qT2ÞV ¼ ½q=qTðqS=qVÞT
V ¼ q2S=qTqV ¼ q2S=qVqT

¼ ½q=qVðCv=TÞ
T ¼ 1=T½ðqCVÞ=qVÞT
 ð4-47Þ

Similar relations exist for (qS/qT)P, (qS/qP)T, and so forth (see Problem

Set III in Appendix I).

�S ¼
ð
ðCV=TÞdT þ 1=T

ð
½ðqE=qVÞT þ P
dV ð4-48Þ

For one mole of an ideal gas, with constant CV,

�S ¼ CV lnðT2=T1Þ þ R lnðV2=V1Þ ð4-49Þ

Equivalently,

�S ¼ CV lnðT2=T1Þ þ R lnðT2P1=P2T1Þ

¼ ðCV þ RÞ lnðT2=T1Þ þ R lnðP1=P2Þ

¼ CP lnðT2=T1Þ þ R lnðP1=P2Þ ð4-50Þ

(This can be obtained directly.)
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dS ¼ dqrev=T ¼ dH=T � ðV=TÞdP ð4-51Þ

�S ¼
ð

CPdT=T þ 1=T

ð
½ðqH=qPÞT � V
dP

¼ CP lnðT2=T1Þ þ 1=T

ð
½V � TðqV=qTÞP � V
dP ð4-52Þ

For one mole of an ideal gas,

�S ¼ CP lnðT2=T1Þ � R lnðP2=P1Þ

For vaporization (constant T, P)

�S ¼ �Hvap=T ¼
ð

dqrev=T

� �

ð4-53Þ

Note: We have made frequent use of the so-called Thermodynamic Equations of

State. The easiest way to derive them is from the Maxwell relations, to be discussed

in Chapter 5. However, we can also obtain them from the general expressions of dS

(Eqs. 4-43 and 4-51) by observing that dS is an exact differential and therefore the

reciprocity relations hold. Applying these we readily obtain the Thermodynamic

Equations of State.

4.13.2 Irreversible Processes

If the transition is irreversible, then one must devise a reversible path.

Example: Calculate �S for the transformation of 1 mol of supercooled

water at �10�C to ice at �10�C. This is a nonequilibrium irreversible

path, which can be evaluated by choosing the following reversible path.

H2Oðl; 0�CÞ ! rev H2Oðs; 0�CÞ
"rev #rev ð4-54Þ
H2Oðl;�10�CÞ ! irrev H2Oðs;�10�CÞ

Note: It is obvious by now that entropy is basic to any discussion of natural changes in

thermodynamics, but to use it, one must consider both the system and the

surroundings except when the system is isolated. But there ways to take account of

the effect of the surrounding without using it. This is accomplished by the use of two

new thermodynamic finctions, the Helmholtz free energy and the Gibbs free

energy, to be discussed in the next chapter.
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CHAPTER 5

USEFUL FUNCTIONS: THE FREE
ENERGY FUNCTIONS

Combining the First and Second Laws, namely, dE ¼ dq � PdV and dS ¼
dqrev/ T, gives

dE ¼ TdS � PdV ð5-1Þ

Note: It is implied in this and the subsequent sections that P and Tarewell defined, i.e.,

pertaining to the properties of the system.

This expression of dE in terms of dS and dV is extremely simple and S and

V are said to be the ‘‘natural variables’’ of E. However, they are not the most

convenient variables in treating chemical problems. The most convenient

variables are T and P. It is, of course, possible to write dE as a function

of T and V, namely dE ¼ CvdT þ [T (qP/qV)T � P] dV, which we used

before; however the coefficients of dV and dT are not as simple as those

of dV and dS.

The question obviously arises: ‘‘Are there thermodynamic state functions

whose natural variables are P and T or V and T or S and P, etc., and how can

we find them?’’

In elementary discussions, it is common practice to define new functions

by combining E, S, and V and to show that their differentials have the

desired characteristics. The new functions are as follows:

Thermodynamics and Introductory Statistical Mechanics, by Bruno Linder
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� Enthalpy: H ¼ E þ PV (variables S, P)

dH ¼ TdS þ VdP

� Helmholtz Free Energy: A ¼ E � TS (variables T, V)

dA ¼ �SdT � PdV

� Gibbs Free Energy: G ¼ H � TS (variables T, P)

dG ¼ �SdT þ VdP

The generation of the above combinations appears to be arbitrary and do

not exhaust all possibilities. There are other functions that are also simple

and useful. A general mathematical technique exists for generating all such

functions. This leads to the topic of Legendre Transformations.

5.1 MATHEMATICAL INTERLUDE IV:
LEGENDRE TRANSFORMATIONS

Equation 5-2 is the well-known representation of a straight line in the x; y

frame. x and f are, respectively, the slope and the intercept of the line.

y ¼ xx þ f ð5-2Þ

If the line is curved, the equation can be represented as

y ¼ xðxÞx þ fðxÞ ð5-3Þ

Here, x ¼ dy=dx. The curve (Eq. 5-3) can be completely described by

specifying x and the corresponding y or by specifying the slope x and the

corresponding intercept f; that is (as is obvious)

fðxÞ ¼ y � xx

or

fðxÞ ¼ yðxÞ � xðdy=dxÞ ð5-4Þ

The variable x is considered to be the independent variable, and the function

f(x) is the Legendre transformation of y.
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Generalization to more than one variable gives

fðx1 � � � xrÞ ¼ Yðxi; . . . ; xrÞ � �ixiqy=qxi ¼ Y � �ixixi ð5-5Þ

The Legendre transformation transforms a function Y of the variables xi

in terms of the slopes of Y with respect to xi.

5.1.1 Application of the Legendre Transformation

Given the function E ¼ E(S,V), find a function whose natural variables are T

and P. Note that T and P are the slopes of E with respect to S and V; thus the

Legendre transformation should be applicable.

fðT;PÞ ¼ EðS;VÞ � SðqE=qSÞV � VðqE=qVÞS ð5-6Þ
f ¼ E � ST � Vð�PÞ ¼ E þ PV � TS ð5-7Þ

This is, of course, the Gibbs free energy G.

It is always a good idea to verify that f is indeed a function of T and P.

Looking at the differential df and using Equation 5-7 yields

df ¼ dE � TdS � SdT þ PdV þ VdP ð5-8Þ
Substituting

dE ¼ TdS � PdV ð5-9Þ

gives

df ¼ �SdT þ VdP ð5-10Þ

which proves that f is indeed a function of the variables T and P.

Given the function E(S,V), find a function, f, whose natural variables are

T and V. This is an example of a one-variable problem because V is held

fixed throughout. Thus, ignoring differentiation with respect to V gives

fðT;VÞ ¼ EðS;VÞ � SðqE=qSÞT ¼ E � TS ð5-11Þ

(Obviously, the function is the Helmholtz Free Energy, A.)

To verify that f is a function of T and V, we write

df ¼ dE � TdS � SdT

¼ TdS � PdV � TdS � SdT

¼ �SdT � PdV ð5-12Þ
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5.2 MAXWELL RELATIONS

From the fundamental relations on the left of the equations below, we obtain

at once the Maxwell relations on the right, simply by making use of the

reciprocity relations (see Eq. 3-12 in Chapter 3).

1: dG ¼ �SdT þ VdP � ðqS=qPÞT ¼ ðqV=qTÞP ð5-13aÞ
2: dA ¼ �SdT � PdV ðqS=qVÞT ¼ ðqP=qTÞV ð5-13bÞ
3: dH ¼ TdS þ VdP ðqT=qPÞS ¼ ðqV=qSÞP ð5-13cÞ
4: dE ¼ TdS � PdV �ðqP=qSÞV ¼ ðqTqPÞV ð5-13dÞ

The last two Maxwell Relations are less important than the first two.

Note: The easiest way to derive the Thermodynamic Equations of State (see

Section 3.7) is to obtain them via the Maxwell Relations. Combining (qE/

qV)T ¼ T(qS/qV)T with the right-hand side of Equation 5-13b and (qH/qP)T ¼
T(S/qP)T with the right-hand side of Equation 5-13a yields the Thermodynamic

Equations of State (Eqs. 3-43 and 3-44).

5.3 THE GIBBS-HELMHOLTZ EQUATIONS

From the relations on the left-hand of Eq. 5-13a and Eq. 5-13b, one imme-

diately obtains a set of equations, known as the Gibbs-Helmholtz equations.

These equations relate the temperature derivatives of A and G to E and H,

respectively

½q=qTðG=TÞ	P ¼ 1=Tð�SÞ � ½H � TS	=T2

¼ �H=T2 ð5-14aÞ

or

½qðG=TÞ=qð1=TÞ	P ¼ �T2½qðG=TÞ=qT	P ¼ H ð5-14bÞ
½q=qTðA=TÞ	V ¼ 1=TðqA=qTÞV � A=T2

¼ 1=Tð�SÞ � ½E � TS	=T2

¼ �E=T2 ð5-15aÞ

or

½qðA=TÞ=qð1=TÞ	V ¼ �T2½qðA=TÞ=qT	V ¼ E ð5-15bÞ
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5.4 RELATION OF �A AND �G TO WORK: CRITERIA
FOR SPONTANEITY

5.4.1 Expansion and Other Types of Work

We have seen before that useful relations exist between �E, �H, and q,

namely, �E ¼ qV and �H ¼ qp, provided that there is no work other than

pressure-volume (PV) work. Other relations, even more useful, exist

between �A, �G, and w. These relations entail not only pressure-volume

work but also other types of work, which we designate as ‘‘other’’ work:

wtot ¼ wPV þ wother . Some authors refer to this work as ‘‘net’’ work or

‘‘useful’’ work. It is assumed that under all circumstances P and T are well

defined, that is, that they are properties of the system. From the Clausius

Inequality
Þ

dq=T 
 0 (Eq. 4-19) and the relation A

Ð
B dq/T 
 SB � SA

(Eqs. 4-20b and 4-22), we deduce the following relations:

1) Constant T:

1=T

ð
dq ¼ ð1=TÞ qA!B 
 SB � SA ð5-16Þ

or

qA!B 
 TSB � TSA ð5-17Þ

Adding wA ! B to both sides of the equation yields

qA!B þ wA!B 
 TSB � TSA þ wA!B ð5-18Þ

Thus,

EB � EA 
 TSB � TSA þ wA!B ð5-19aÞ
ðEB � TSBÞ � ðEA � TSAÞ 
 wA!B ð5-19bÞ

or

�AT ¼ AB � AA 
 wtot ð5-20Þ

2) Constant T and V:

wtot ¼ wother

and

�AT;V 
 wother ð5-21aÞ
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If there is no ‘‘other’’ work and V is constant,

�AT;V 
 0 ð5-21bÞ

3) Constant T and P:

wtot ¼ �PðVB � VAÞ þ wother

Using Equation 5-20a gives

ðAB þ PVBÞ � ðAA þ PVAÞ 
 wother ð5-22Þ

or

�GT;P ¼ GB � GA 
 wother ð5-23aÞ

In the absence of ‘‘other’’ work, the condition is

GT;P 
 0 ð5-23bÞ

Relation ð5-23aÞ is useful because it provides a means for determining

�G from work measurements. If wother is electrical work, generated by a

galvanic cell, for example, it is related to the cell potential in the manner

wother ¼ �nFE0, where n is the number of moles of electrons, F is the

Faradys’s constant (96,486 k Coulomb/mol), and E0 is the cell potential.

Thus, by measuring the cell potential reversibly, one readily obtains �GT,P.

If only PV-work is present, Equation 5-23a reduces to (5-23b.)

It is now clear why the Gibbs and the Helmholtz energies are called

‘‘free’’ energies. They are part of the energy of the system, which is free

to do work.

5.4.2 Comments

The free energy expressions given by Equations 5-19b and 5-23b are

particularly revealing because they state that, if the change is negative,

the transition is irreversible. As noted before (and to be elaborated on

more fully in Chapter 7), spontaneous processes are irreversible. It is noted

that both free energy expressions are restricted, �A to constant T and V and

�G to constant T and P. This is in contrast to the change in entropy (Eq. 4-

42b), which is restricted to an isolated system but is frequently replaced by

the whole universe, implying that the system and the entire surroundings

constitute an isolated system. The condition for reversibility in terms of

entropy changes is often written as �Suniverse � 0. The question now arises:

Why is it necessary to include the surroundings when using the entropy cri-

terion but not the Helmholtz or Gibbs free energies? The change in the

entropy, �Suniverse, refers to the system and the environment. The change
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in the Gibbs and Helmholtz free energies refer only to the system. The fol-

lowing analysis may be instructive.

It was shown previously (in Chapter 3) that, when a system is capable

of doing only PV work, �H ¼ qP. If there is also ‘‘other’’ work, obviously

�H ¼ qP þ wother . Recall that, in deriving the Clausius Inequality (Eq. 4-19),

the system was taken from state A to state B by an irreversible path and

returned from B to A by a reversible path. It was tacitly assumed that this

is always possible; in fact, the inequality �Sisolated � 0 is based on that

assumption. If the isolated system consists of the entire universe, it is

reasonable to assume that changes in the environment can proceed quasi-

statically, since the environment is so enormous. When the system exchange

heat with the surroundings, we must have qsys ¼�qsurr. Therefore,

qsurr ¼��Hsys þ wother . The entropy change of the surroundings at con-

stant T and P is �Ssurr ¼��Hsys/T þwother/T and the total entropy change

of system and surroundings is �Stot ¼�Ssys þ�Ssurr ¼�Ssys ��Hsys/

T þwother/T ¼ ��Gsys/T þwother/T. Thus, although �G is clearly defined

in terms of �S and �H—of the system, it is obvious that it is also related

to the total entropy change, namely, the change in the system and the sur-

roundings. In summary, when the entropy is used to establish spontaneous or

natural transformations, the total entropy change of system and surround-

ings must be used. At constant T and P, the entropy change of the surround-

ings can be replaced by ��Hsys/T þwother/T, provided that the heat

exchange of the surroundings is treated as reversible and the entire transfor-

mation can be written in terms of properties of the system. Notice that

because �Stot ¼ �Suniverse � 0 we obtain �GT;P 
 wother.

5.5 GENERALIZATION TO OPEN SYSTEMS AND
SYSTEMS OF VARIABLE COMPOSITION

5.5.1 Single Component System

Let the superscript bar denote a molar value at constant P and T. It is known

from experience that CP(T,P; n) ¼ nCP(T,P). Also, G(T,P; n) ¼ nG(T,P),

S(T,P; n) ¼ nS(T,P), etc. Accordingly,

dG ¼ ndG þ Gdn ð5-24aÞ

¼ nð�SdT þ VdPÞ þ Gdn ð5-24bÞ

¼ �SdT þ VdP þ Gdn ð5-24cÞ
or

G ¼ ðqG=qnÞT;P ¼ G=n ð5-25Þ
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5.5.2 Multicomponent Systems

G ¼ GðT;P; n1; . . . ; nrÞ

dG ¼ ðqG=qTÞP; n i
dT þ ðqG=qPÞT;ni

dP þ �iðqG=qniÞT;P; n j6¼i
dni ð5-26aÞ

dG ¼ �SdT þ VdP þ �iðqG=qniÞT;P;n j6¼i
dni ð5-26bÞ

The bar under the ni serves to denote that all ni variables are held constant.

The symbol nj6¼i denotes that all mole numbers except ni are to be held

constant.

Similarly,

E ¼ EðS;V; n1; . . . ; nrÞ

dE ¼ ðqE=qSÞV; ni
dS þ ðqE=qVÞS; ni

dV þ �iðqE=qniÞS;V; nj6¼i
dni ð5-27aÞ

¼ TdS � PdV þ �iðqE=qniÞS;V; nj6¼i
dni ð5-27bÞ

But also G ¼ E � TS þ PV and so

dG ¼ dE � TdS � SdT þ PdV þ VdP ð5-28aÞ

Substituting Eq. 5-27b for dE gives

dG ¼ �SdT þ VdP þ �iðqE=qniÞS;V; nj6¼i
dni ð5-28bÞ

Comparing Eqs. 5-26b and 5-28b shows that

ðqG=qniÞT;P; n j6¼i
¼ ðqE=qniÞS;V; nj6¼i

ð5-28cÞ

In similar fashion, we can show that

ðqG=qniÞT;P; nj6¼i
¼ ðqH=qniÞS;P; nj 6¼i

¼ ðqA=qniÞT;V; nj6¼i
ð5-28dÞ

5.6 THE CHEMICAL POTENTIAL

The partial derivatives in the preceding section transcend the ordinary prop-

erties of partials and deserve a special name. They are called chemical

potentials and are denoted by the symbol mi. Thus, although the chemical

potential is generally referred to as the partial molar Gibbs free energy, it

is really also the partial molar Helmholtz free energy, the partial molar
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enthalpy, and the partial molar energy. Using the common symbol mi, the

differentials of the thermodynamic functions can now be expressed as

dE ¼ TdS � PdV þ �imi dni ð5-29aÞ
dH ¼ TdS þ VdP þ �imi dni ð5-29bÞ
dA ¼ �SdT � PdV þ �imi dni ð5-29cÞ
dG ¼ �SdT þ VdP þ �imi dni ð5-29dÞ

5.7 MATHEMATICAL INTERLUDE V: EULER’S THEOREM

The standard definitions of Intensive and Extensive Variables are:

� Intensive Variables are independent of the mass of material.

� Extensive Variables are dependent on the mass of the material.

A mathematical definition (following Wall, 1965) states:

An extensive variable is a homogeneous function of first degree in the

masses of the material, with such homogeneity being fulfilled while all

intensive variables are held constant. (An intensive property is a homo-

geneous function of degree zero in the masses.)

� Homogeneous function of degree n: fðx; y; zÞ is homogeneous of degree

n in the variables x; y; z if

fðlx; ly;lzÞ ¼ lnfðx; y; zÞ ð5-30Þ

� Euler’s Theorem: if fðx; y; zÞ is homogeneous of degree n, then

xðqf=qxÞ þ yðqf=qyÞ þ zðqf=qzÞ ¼ nfðx; y; zÞ ð5-31Þ

� Proof: differentiate Eq. 5-30 with respect to l. This gives

nln�1fðx; y; zÞ ¼ ½qf=qðlxÞ	½qðlxÞ=ql	
þ ½qf=qðlyÞ	½qðlyÞ=ql	 þ ½qf=qðlzÞ	½qðlzÞ=ql	 ð5-32Þ

¼ xqf=qðlxÞ þ yqf=qðlyÞ þ zqf=qðlzÞ ð5-33Þ

Setting l ¼ 1 obtains

nfðx; y; zÞ ¼ xqf=qx þ yqf=qy þ zqf=z ð5-34Þ

If n ¼ 1, f is homogeneous of degree 1; if n ¼ 0, f is homogeneous of

degree 0.
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EXAMPLES

1. V ¼ V(T, P; n1, . . . , nr) is homogeneous of degree 1 in the extensive

variables n1, nr. Thus, V ¼ V(T, P; ln1, . . . , lnr). The intensive variables

T, P must be held constant. Thus, by Euler’s Theorem

V ¼ �iniðqV=qniÞT ;P;nj 6¼ i
ð5-35Þ

2. A ¼ A(T, V; n1, . . . , nr) is homogeneous of degree 1 in the extensive

variables V, n1, . . . , nr. Thus, A ¼ A(T, lV; ln1, . . . , lnr). Holding T

constant gives

A ¼ VðqA=qVÞT;ni
þ �iðqA=qniÞV;nj 6¼i

ð5-36Þ

5.8 THERMODYNAMIC POTENTIALS

In Equations 5-29a, b, c, and d, we obtained expressions for the differentials

dE, dH, dA, and dG in terms of all the system variables. We are now in a

position to derive expressions for the quantities E, H, A, and G themselves

rather than for their differentials. They are called thermodynamic potentials

because each gives a complete thermodynamic description of the system, as

will be seen shortly.

First, consider the function dE ¼ TdS � PdV þ�imidni (Eq. 5-29a). To

obtain E, one might be tempted to integrate each term indefinitely and write

E ¼ TS � PV þ �imini ð5-37Þ

Normally, the result would be incorrect because no account is taken of the

integration constants. The result happens to be correct, as can be verified by

applying Euler’s Theorem. Because E is homogeneous of first degree in

the variables S, V, and all the ni, Euler’s Theorem predicts the validity of

Equation 5-37.

Other thermodynamic potentials are not that simply related to their

differential forms. Application of Euler’s Theorem shows that

H ¼ TS þ �imini ð5-38Þ
A ¼ �PV þ �imini ð5-39Þ
G ¼ �imini ð5-40Þ
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Note: If we know E, we can get all other functions by applying Legendre

Transformations without using Euler’s Theorem.

EXAMPLES

1. Given E ¼ E(S,V; n1, . . . , nr), find a function whose natural variables are

T,V; n1, � � � , nr. The Legendre Transformation is

fðT;V; n1; . . . ; nrÞ ¼ E � SðqE=qSÞV;ni
¼ E � TS

¼ �PV þ �imini ð5-41Þ

upon substitution of Eq. 5-37 for E.

This can be checked as follows:

df ¼ dE � TdS � SdT ð5-42aÞ

¼ TdS � PdV þ �imini � TdS � SdT ð5-42bÞ

¼ �SdT � PdV þ �imidni ð5-42cÞ

In other words, f (obviously A) is indeed a function of T,V and the ni.

2. From E (S,V; ni, . . . , ni), obtain a function f¼ f(T,P; m1 � � �mr). Notice

that all the variables are intensive.

f ¼ E � SðqE=qSÞV;ni
� VðqE=qVÞS;ni

� �iniðqE=qniÞS;V; nj 6¼ i
ð5-43aÞ

¼ E � TS þ PV � �imini ¼ 0 ð5-43bÞ

The potential f is peculiar in the sense that it is always equal to zero

and so is its differential

df ¼ �SdT þ VdP � �inidmi ¼ 0 ð5-44Þ

from which several useful relations can be obtained.

At constant mi

�SdT þ VdP ¼ 0 ð5-45Þ
ðqP=qTÞmi

¼ S=V ð5-46Þ

At constant T and mj 6¼ i

VdP � nidmi ¼ 0 ð5-47Þ
ðqP=qmiÞT;mj6¼i

¼ mi=V ð5-48Þ
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Because the functions H, A, and G can be obtained from E by a Legendre

Transformation, which is a mathematical transformation, they must contain

the same thermodynamic information as E.

The function E is expressed in terms of the extensive variables S, V, and

all the ni. The remaining variables are the derivatives of E with respect to

these variables. This is precisely what the Legendre transformation accom-

plishes: it transforms a function in terms of its derivatives.

The independent variables, in terms of which the thermodynamic poten-

tials are expressed, are referred to as characteristic variables. The best

way to determine this is from the differential forms, such as Eqs. 5-39,

5-42c, 5-44, and others.

Note: Generalization of the thermodynamic potentials to multicomponent and open

systems was accomplished by considering the combined First and Second Laws.

Can the First and Second Law be generalized individually so as to apply to a

multicomponent or an open system? The answer is yes, but the derivation will

depend on an additional assumption, namely, that energy is additive.

Consider a system of energy E and volume V. Set up a second system of

infinitesimal amount dni of substance i (see Figure 5.1). The two systems are

in thermal equilibrium, mechanical equilibrium, and matter equilibrium,

insofar as matter flow through membrane permeable to i is concerned. We

incorporate the small system into the large system in two steps.

First, extend the boundary of the large system to incorporate the small

system. Second, push in the piston (reversibly) until the original volume

is restored. This procedure is first carried out adiabatically.

� Step 1: dE ¼ Ei dni; dS ¼ Sidni

� Step 2: dE¼PVidni; dS¼0 ðbecause it is an adiabatic changeÞ ð5-49Þ

Overall, dE ¼ (Ei þ PVi ) dni; dS ¼ Si dni

E, S, V

Eidni

Vidni

Sidni

Figure 5.1 Schematic representation of small system to be incorporared into larger

system.
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This process is repeated with r different species which results in

dE ¼ �iðEi þ PViÞ dni; dS ¼ �iSidni ð5-50Þ

The adiabatic enclosure is now replaced by a diathermal boundary, which

allows reversible exchange of heat and work (PV-work) between the system

and the surrounding, yielding

� First Law: dE ¼ dq þ dw þ �iðEi þ PViÞdni ð5-51Þ

� Second Law: dS ¼ dqrev

T
þ �iSidni ð5-52Þ

Note that since Gi ¼ Ei þ PVi � TSi ¼ mi, the combined First and Sec-

ond Law expressions give the old formula dE ¼ TdS � PdV þ�imidni.
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CHAPTER 6

THE THIRD LAW OF
THERMODYNAMICS

Many people regard the Third Law as a curiosity of no great practicality. For

chemists, the Third Law is a statement of great importance. For example, if

one wishes to obtain �S or �G for the reaction

CðsÞ þ 2 H2ðgÞ ! CH4ðgÞ ð6-1aÞ

at T ¼ 298 K and P ¼ 1 atm, it is easy enough to measure �H calorimetri-

cally; however, to obtain �S or �G calorimetrically may be very difficult

if not impossible. Recall that the determination of �S requires a reversible

path, which is often hard to construct and may turn out that the reaction rate

along that path is so slow as to be virtually immeasurable. With the help of

the Third Law, especially in the form of so-called Nernst’s Heat Theorem,

the determination is relatively easy.

To be specific, suppose one wishes to determine �S for the reaction dis-

played in Equation 6-1a. One could imagine a reversible path that would

take the reactants C and H2 from 1 atm pressure to the equilibrium pressure,

P�, where they would react to form CH4 and return CH4 from P� to 1 atm.

But this may be impossible because P� is very small and no reaction is likely

to take place. Another possibility is to choose a path that takes the reactants
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reversibly from T to T0 ¼ 0 K, producing the product CH4 and returning

from T0 to T, all at P ¼ 1 atm (see Eq. 6-1b).

Cðs; 1 atm;T ¼ 0Þ þ H2ðs; 1 atm;T ¼ 0Þ ! CH4ðs; 1 atm;T ¼ 0Þ
" " #
Cðs; 1 atm;TÞ þ H2ðg; 1 atm;TÞ ! CH4ðg; 1 atm;TÞ

ð6-1bÞ

6.1 STATEMENTS OF THE THIRD LAW

There are several statements of the Third Law, none completely satisfactory

from a phenomenological point of view. They come under several headings:

1) Nernst Heat Theorem:

lim
T!0

�S ¼ 0 or �S0 ¼ 0 ð6-2Þ

This statement is based on observations by Richards (1902), who

found that for several galvanic reactions formula (6-2) holds. Nernst

thought that it should be universally true.

2) Planck:

lim
T!0

S ¼ 0 or S0 ¼ 0 ð6-3Þ

Planck assumed this relation to hold for every ‘‘homogeneous

chemical body’’

3) G. N. Lewis

Every substance has a finite positive entropy, but at the absolute

zero of temperature, the entropy may become zero and does so in

the case of a perfect crystalline solid.

4) Unattainability of Absolute Zero

This is another form of the Third Law, which some regard as most

satisfactory, although it does not have the practicality of the previous

statements. This form says that no system can be cooled down to

absolute zero. It can be shown that this statement is consistent or leads

to the Nernst Heat Theorem.

There are problems with each of the statements.

The Nerst Heat Theorem is neither a theorem nor has it anything to

do with heat. Furthermore, it is too general.
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Planck’s statement is not based on experimental observations. One

cannot measure entropy itself, only entropy changes. Furthermore, it

is too general and does not apply to all homogeneous substances.

The Lewis statement has similar shortcomings, and is, moreover,

limited to ‘‘perfect’’ crystalline solids. However, how does one

know when a crystalline solid is ‘‘perfect’’?

The entropy of a substance can be determined two ways: calorime-

trically (to be discussed in Section 6.1) and statistically (i.e., by means

of statistical mechanics). In most instances, the results are the same,

but there are exceptions. In all cases where differences have been

observed, the discrepancies have been traced to the presence of

‘‘frozen-in’’ structures. Molecules such as CO, NNO, etc. have dipole

moments, which should all point in the same direction as the tempera-

ture goes to zero. With these molecules, however, the dipole moments

are so small that they do not line up as the substance is cooled down to

T ¼ 0. The random structures are ‘‘frozen-in,’’ and the solid is not

‘‘perfect.’’ In other words, the systems are not in ‘‘true thermodynamic

equilibrium,’’ and the measured entropies close to zero will not coin-

cide with statistical entropies, which are calculated on the basis of true

thermodynamic equilibrium. From this standpoint, a perfect crystal-

line solid may be defined as one that is in true thermodynamic equili-

brium. But it must be rememberd that, to ascertain whether a solid is

in true thermodynamic equilibrium, one must go outside the realm of

thermodynamics and seek information from other disciplines, such as

statistical mechanics, structural measurements, and so forth.

Because of the exceptions, the Third Law has not been universally

accepted as a Law on par with the First and Second Laws. Although

the so-called exceptions can be accounted for, the explanations are

based on extrathermodynamic arguments; for this reason, some people

maintain that the Third Law should not be a part of the Laws of

Thermodynamics.

The most common use of the Third Law is in the form of Planck’s or

Lewis’s statements, which assume that S0 ¼ 0 (under any condition of pres-

sure). The Third Law allows us to determine the actual entropy of pure

substances, rather than entropy differences. If �S ¼ SðTÞ 	 Sð0Þ represents

the entropy difference between the temperature T and T ¼ 0 K and because

Sð0Þ is zero by the Third Law, the actual SðTÞ is the same as �S.

The determination of entropy at a finite temperature, T, is generally

obtained from experimental heat capacity and transition enthalpy (solid-

liquid, liquid-vapor, etc.) data (See Fig. 6.1). At very low temperatures,

where the substances are almost always solids, there is virtually no
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difference between CP and Cv, and the heat capacity at these low tempera-

tures is generally denoted as C. The entropy, S, can be obtained from a plot

of CP=T vs. T, to which transition entropies, �Htrans=T, are added. The trou-

ble is that CP cannot be measured at very low temperatures (say below 10 K).

What is normally done is to estimate C from the Debye-Cube Law, C ¼ aT3

(which Debye derived statistically), where the parameter a is a constant. If

T� is the lowest T for which C can be measured, then

ST ¼
0

ðT�

ðCDeb=TÞdT þ
XðTtran

T�
ðC=TÞdT þ

X
�Htran=Ttran ð6-4aÞ

¼ 1=3aT�3 þ ’’ þ ’’ ð6-4bÞ

6.2 ADDITIONAL COMMENTS AND CONCLUSIONS

Nernst thought that the Nernst Heat Theorem could be deduced from

the First and Second Laws. Einstein proved him wrong. What can be

inferred from the First and Second Laws is that the heat capacity at

T ¼ 0 is zero.

Consider the relation �G ¼ �H 	 T�S. As T ! 0, �G 
 �H as shown

in Fig. 6.2 (provided �S is finite). However, this does not mean �Sð0Þ ¼ 0.

For �S to be zero, the slope ½q�G=qT�P must be zero. The Second Law

does not require it.

We can draw some conclusions from the First and Second Laws

ðq�G=qTÞP ¼ 	�S ¼ ð�G 	�HÞ=T ð6-5Þ

lim
T!0

ðq�G=qTÞP ¼ lim
T!0

ð�G 	�HÞ=T 
 0=0 ð6-6Þ

Cp

Ttr

T*

T

Ttr

Figure 6.1 Schematic representation of the variation of CP with T. The symbol Ttr

represents solid-liquid and liquid-vapor transition temperatures; the low temperature dotted

line is extrapolated.
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Differentiating numerator and denominator with respect to T (l’Hospital’s

Rule) shows that

lim
T!0

ðq�G=qTÞP ¼ lim
T!0

½ðq�G=qTÞP 	 ðq�H=qTÞP�=1 ð6-7aÞ

and thus

lim
T!0

ðq�H=qTÞP ¼ lim
T!0

�CP ¼ 0 ð6-7bÞ

The same can be proved for CP, namely, limT!0 CP ¼ 0.

∆G

∆H

T

Figure 6.2 Schematic representation of the variation of �G and �H with temperature.

ADDITIONAL COMMENTS AND CONCLUSIONS 69



CHAPTER 7

GENERAL CONDITIONS FOR
EQUILIBRIUM AND STABILITY

A system is in equilibrium when its properties and the properties of the sur-

roundings do not change with time. If the surrounding properties change,

then the process is one of steady state.

In mechanics, one can distinguish between four kinds of equilibriums:

1) stable, 2) metastable, 3) neutral, and 4) unstable (see Figure 7.1, in which

V represents the potential and r the displacement).

In thermodynamics, there are also stable and metastable equilibriums but

not unstable equilibriums:

� Stable Equilibrium: ice at 263 K and 1 atm

� Metastable Equilibrium: supercooled water at 263 K and 1 atm

� Neutral Equilibrium: ice and water at 273 K and 1 atm

In mechanics, the conditions for equilibrium require that dV=dr ¼ 0 for

all types of equilibrium. For stable and metastable equilibriums, we must

also have d2V=d2r > 0; for neutral equilibrium, d2V=d2r ¼ 0; and for

unstable equilibrium, d2V=d2r < 0.

In thermodynamics, the inequalities of the thermodynamic functions

provide a clue as to the presence or absence of equilibrium and stability

conditions. Specifically, for an isolated system not in equilibrium,

Thermodynamics and Introductory Statistical Mechanics, by Bruno Linder
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�Sisolated > 0. A plot of Sisolated vs. time would look like the diagram in

Figure 7.2a. A plot of S vs. some thermodynamic quantity, such as the pro-

gress variable, x, (Section 9.5) may look like the diagram in Figure 7.2b.

The equilibrium value is the maximum value and can be reached from either

side. Conversely, if a system is in equilibrium to start with, then any varia-

tion that takes it away from equilibrium will result in a decrease in entropy.

This can be handled mathematically by introducing the concept of ‘‘virtual’’

variation.

7.1 VIRTUAL VARIATIONS

A virtual variation is a variation that takes a system in equilibrium (under a

set of constraints) away from it. This can be accomplished, in principle, by

adding more constraints. A virtual variation does not mean that the system

moves from an equilibrium state to a state of nonequilibrium. Rather, it

432

r

1

ν

Figure 7.1 Illustration of various kinds of equilibria in mechanics.

S

Time

Figure 7.2a Schematic representation of the variation of S with time.
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moves away from one equilibrium state to another (less favorable) equili-

brium state. A virtual variation will cause the entropy, which has a

maximum at equilibrium, to decrease and a thermodynamic potential

(E, H, A, or G), which has a minimum at equilibrium, to increase.

Let us denote a change in the system due to a virtual variation by the

symbol to distinguish it from the ordinary difference symbol, �. Thus,

for example, S stands for S � Sequil or S � S0. [Here, the subscript zero

(0) stands for equilibrium, not absolute zero.] To use the idea of virtual var-

iation as applied to S, we expand S in a Taylor series in terms of differ-

entials of 1st, 2nd, etc., order:

S ¼ dð1ÞS þ dð2ÞS þ dð3ÞS þ � � � < 0 ð7-1Þ

From the first-order differential, we can obtain conditions for equili-

brium, from the second-order differential, we can obtain conditions for

stability.

Working with entropy is awkward because of the temperature in the

denominators:

dS ¼ dE=T þ ðP=TÞdV � �iðmi=TÞdni ð7-2Þ

which has to be differentiated. It is a lot easier to work with the other ther-

modynamic potentials E, H, A, and G. The most general results are obtained

from E, which we will use for illustrative purposes.

S

ξ

Figure 7.2b Schematic representation of the variation of S with progress variable.
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7.2 THERMODYNAMIC POTENTIALS—INEQUALITIES

We have already shown (in Section 5.4) that for a closed system in the

absence of ‘‘other’’ work, �AT;V � 0 (Eq. 5-21b) and �GT;P � 0, (Eq.

5.23b) where the equal sign refers to a reversible change and the unequal

sign to an irreversible transformation. We now show that �ES;V � 0 and

�HS;P � 0.

Because dE ¼ dq þ dw and dq � TdS, it follows that dE � TdS � PdV

and, if only PV-work is present,

�ES;V � 0 ð7-3Þ

Also,

dH ¼ TdS þ VdP and if dq � TdS;

�HS;P � 0 ð7-4Þ

If extended to open systems, we have (Eqs. 5-51 and 5-52)

dE ¼ dq þ dw þ �iðEi þ PViÞdni ð7-5Þ

dS ¼ dqrev=T þ �iSidni ð7-6Þ

or, in general

dq � TdS � T�iSidni ð7-7Þ

Accordingly,

dE � TdS þ dw þ �iðEi þ PVi � TSiÞdni ð7-8Þ

dE � TdS þ dw þ �imidni ð7-9Þ

and thus, if no other work than PV-work is present, �ES;V; n i
� 0.

In a virtual variation, conditions for stable equilibrium require that

ES;V;n i
> 0 ð7-10Þ

The subscript ni serves to indicate that all ni are held constant.
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Similar arguments can be used to generalize the other thermodynamic

potential functions, resulting in the requirements for stable equilibrium

HS;P; n i
¼ H � H0 > 0 ð7-11aÞ

AT;V; n i
¼ A � A0 > 0 ð7-11bÞ

GT;P; n i
¼ G � G0 > 0 ð7-11cÞ

In each case, the subscript 0 refers to the equilibrium value of the

function. First, let us consider the stability conditions from the energy

expression. Let us expand E (without restrictions) in a Taylor series.

E¼E�E0

¼ðqE=qSÞV; n i
ðS�S0ÞþðqE=qVÞS; n i

ðV�V0Þ

þ�iðqE=qniÞS;V;nj 6¼i
ðni �ni0Þ

þ1=2fðq2E=qS2ÞV; n i
ðS�S0Þ2 þ2ðq2E=qVqSÞðS�S0ÞðV�V0Þ

þðq2E=qV2ÞS; n i
ðV�V0Þ2 þ�iq

2E=qn2
i Þnj 6¼i

ðni �ni0Þ2gþ		 	þother cross terms

ð7-12Þ

which we write as a sum of variations (dS ¼ S � S0; dV ¼ V � V0 etc.)

E ¼ TdS � PdV þ �imidni þ terms inðdSÞ2; ðdVÞ2; ðdniÞ2; etc: ð7-13aÞ

For short,

E ¼ dð1ÞES;V;n i
þ dð2ÞES;V; n i

þ dð3ÞES;V; n i
þ cross terms in dSdV; etc:

ð7-13bÞ

The requirement that ES;V; n i
> 0 can be satisfied in many ways. For

some systems, the first-order variation is already positive, dð1ÞE > 0,

and ES;V; n is automatically satisfied. For other systems and in fact for

most, the first-order differential is zero, i.e., dð1ÞE ¼ 0, and the higher-order

differentials must be examined. (We shall refer to such systems as ‘‘nor-

mal.’’) Sometimes, dð2ÞE ¼ 0, then third- and fourth-order differentials

must be considered. In summary
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Criteria for equilibrium : dð1ÞES;V; n i
� 0

Criteria for stability : dð2ÞES;V; n i
� 0

Criteria for higher-order stabilities : dðnÞES;V; n i
> 0 ðwhen dð2ÞÞES;V; n i

¼ 0Þ:
ð7-14Þ

7.3 EQUILIBRIUM CONDITION FROM ENERGY

Let us consider a system that we imagine is divided into two parts. The parts

may be real phases or they may be parts separated by an imaginary bound-

ary. Denote these phases as 1 and 2. Variations in S, V, or n may occur in

each ‘‘phase,’’ but the total values of S, V, and n must remain constant, as

required by stability conditions. Thus

dð1ÞES;V; n i
¼ Tð1ÞdSð1Þ þ Tð2ÞdSð2Þ � Pð1ÞdVð1Þ � Pð2ÞdVð2Þ

þ �im
ð1Þ
i dn

ð1Þ
i þ �im

ð2Þ
i idn

ð2Þ
i � 0 ð7-15Þ

Here, the superscripts refer to the phases or parts of the system. Recall

that the T, P, and m values are derivatives of E evaluated at equilibrium.

Thus, the values of intensive variables are the equilibrium values from

which the virtual variations have occurred. Furthermore, it should be clear

that, because the total S, V, and n are fixed, the sums of their variations in

the two phases must add up to zero., i.e.

dS ¼ dSð1Þ þ dSð2Þ ¼ 0

dV ¼ dVð1Þ þ dVð2Þ ¼ 0

dni ¼ dn
ð1Þ
i þ dn

ð2Þ
i ¼ 0

ð7-16Þ

Examples of these are given in the following sections.

7.3.1 Boundary Fully Heat Conducting, Deformable,
Permeable (Normal System)

Suppose all variations are zero except the fluctuations in entropy; that is,

dSð1Þ or dSð2Þ are not zero. All other variations are zero. Obviously,

dSð1Þ ¼ �dSð2Þ.
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It follows from Eq. 7-15 that

dð1ÞE ¼ ½Tð1Þ � Tð2Þ�dSð1Þ � 0 ð7-17Þ

if dSð1Þ > 0; then Tð1Þ � Tð2Þ ð7-18aÞ

if dSð1Þ < 0; then Tð1Þ � Tð2Þ ð7-18bÞ

Obviously, the inequalities contradict each other (the T terms refer to the

initial equilibrium T values) and the only valid relation is

Tð1Þ ¼ Tð2Þ ¼ T ð7-18cÞ

EXERCISES

1. Let there be fluctuations only in the volume. Show that

if dVð1Þ > 0 then Pð2Þ � Pð1Þ ð7-19aÞ
if dVð1Þ < 0 then Pð2Þ � Pð1Þ ð7-19bÞ

and so,

Pð1Þ ¼ Pð2Þ ¼ P ð7-19cÞ

2. Show that, if fluctuations are only allowed in ni,

mð1Þi ¼ mð2Þi ¼ mi ð7-20Þ

In summary, for systems in which temperature, pressure, and chemical

potentials are uniform throughout (‘‘normal’’ systems), dð1ÞES;V; n i
¼ 0.

7.3.2 Special Cases: Boundary Semi-Heat Conducting,
Semi-Deformable, or Semi-Permeable

We can apply the same procedure to cases in which the partition is semi-heat

conducting, semi-deformable, or semi-permeable. For example, partition is

semi-heat conducting, so that heat can only flow from 2 to 1, in which case,

dSð1Þ > 0. Again, holding all variations fixed except dSð1Þ ¼ �dSð2Þ, we get

½Tð1Þ � Tð2Þ�dSð1Þ � 0 ð7-21Þ
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or Tð1Þ � Tð2Þ. In other words, the system can be in equilibrium if Tð1Þ equals

Tð2Þ or is greater than Tð2Þ, but Tð2Þ cannot be less that Tð1Þ.

EXERCISES

3. Suppose the partition is semi-deformable, in such a way that only V(1)

can increase [i.e., dVð1Þ ¼ �dVð2Þ � 0]. All other variations are zero.

Show that

Pð2Þ � Pð1Þ ð7-22Þ

4. Suppose the partition is semi-permeable to species i in such a way that i

can only flow from 2 to 1. Show that

mð1Þi � mð2Þi ð7-23Þ

Note: If the partition is impermeable to all kinds of variations, then each phase can

have arbitrary temperature, pressure, and chemical potential values.

7.4 EQUILIBRIUM CONDITIONS FROM
OTHER POTENTIALS

The foregoing analysis based on dð1ÞES;V; n i
can be applied to the other ther-

modynamic potentials, namely, dð1ÞHS;P; n i
, dð1ÞAT;V; n i

, and dð1ÞGT;P; n i
. Obvi-

ously, we must pay attention to the constraints indicated by the subscripts.

Thus, when an intensive variable is held constant, we cannot divide the

system into two parts, assuming that T or P decreases in one part and

increases by the same amount in the other part. The intensive variables

are not additive. The constraints allow virtual variations between the

‘‘phases’’ of the extensive variables only; the intensive variables must be

uniform and constant throughout. Thus, from dð1ÞHS;P; n i
we can obtain

information about the equilibrium conditions of T and mi but not P. However,

we already know the condition for P: it must be uniform throughout.

Similarly, from ð1ÞdAT;V; n i
we can get the equilibrium criteria for P and

mi but not for T. From dð1ÞGT;P; n i
, we can only obtain equilibrium conditions

for mi.
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7.5 GENERAL CONDITIONS FOR STABILITY

In the previous sections, we developed criteria for stable equilibrium for a

number of systems and for different thermodynamic potentials. In this sec-

tion, we will discuss the nature of the equilibrium states, namely, whether

the systems are in stable or neutral (or undetermined) equilibrium or

whether they are unstable. In thermodynamics, we do not have lasting

unstable equilibria. Using the symbol > to represent stable equilibrium

and the sign ¼ to represent neutral equilibrium, we may write

ES;V; n i
� 0 ð7-24Þ

If we use the other potentials, the conditions for stability are

HS;P; n i
� 0 ð7-25aÞ

AT;V; n i
� 0 ð7-25bÞ

GT;P; n i
� 0 ð7-25cÞ

7.6 STABILITY CONDITIONS FROM E

The equilibrium criteria, as shown in preceding sections, require that for

‘‘normal’’ systems T, P, and mi be constant and dð1ÞES;V; n i
¼ 0. To satisfy

the stability conditions, one must consider the second-order (or higher-

order) variations. As shown before

dð2ÞE ¼ 1=2½q2E=qS2ÞV; n i
ðS � S0Þ2 þ ðq2E=qV2ÞS; n i

ðV � V0Þ2

þ
X

i

ðq2E=qn2
i ÞS;V; n j6¼i

ðn � niÞ2 þ cross terms� ð7-26aÞ

¼ 1=2½ðT=CVÞðdSÞ2 � ðqP=qVÞS; n i
ðdVÞ2

þ
X

i

ðqmi=qniÞS;V;nj6¼i
ðdniÞ2 þ cross terms� ð7-26bÞ

Let us again divide the system into two parts (‘‘phases’’), allowing

fluctuations to occur between the parts but keeping in mind that the total

S, V, and ni must be constant. Because dSð1Þ ¼ �dSð2Þ and so

ðdSð1ÞÞ2 ¼ ð�dSð2ÞÞ2 ¼ ðdSð2ÞÞ2
, and so forth, and for normal systems

Tð1Þ ¼ Tð2Þ ¼ T; Pð1Þ ¼ Pð2Þ ¼ P and mð1Þi ¼ mð2Þi ¼ mi, we obtain for stable

equilibrium
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d2ES;V; n i
¼ 1=2f½T=C

ð1Þ
V þ T=C

ð2Þ
V �ðdSð1ÞÞ2

þ ½�ðqP=qVð1ÞÞ
Sð1Þ; n

ð1Þ
i

� ðqP=qVð2ÞÞ
Sð2Þ; n

ð2Þ
i

�ðdVð1ÞÞ2

þ �i½ðqmi=qn
ð1Þ
i Þ

Sð1Þ;Vð1Þ; n
ð1Þ
j6¼i

;þðqmi=qniÞSð2Þ;Vð2Þ;n
ð2Þ
j6¼i

�ðdn
ð1Þ
i Þ2

þ cross terms in dSð1Þ; dVð1Þ; etc:g > 0 ð7-27Þ

Holding all variations fixed except dSð1Þ ¼ �dSð2Þ we get

T½1=C
ð1Þ
V þ 1=C

ð2Þ
V �ðdSð1ÞÞ2 > 0 ð7-28Þ

Because T > 0 except at absolute zero, the quantity within brackets must

be positive. If 1 and 2 are portions of the same homogeneous phase, we can

denote the heat capacities as C
ð1Þ
V ¼ nð1ÞCV and C

ð2Þ
V ¼ nð2ÞCV. Obviously,

CV > 0 when T > 0. When T ¼ 0, CV ¼ 0, as we already saw

(Section 6.2), but T=CV > 0. We can express these results by writing

CV � 0 ð7-29Þ

where the ¼ sign refers to 0 K and > refers to a finite temperature.

Holding all variations fixed except dVð1Þ ¼ �dVð2Þ, we get

�½qP=qVð1ÞÞ
Sð1Þ; n

ð1Þ
i

þ ðqP=qVð2ÞÞ
Sð2Þ; n

ð2Þ
i

ðdVð1ÞÞ2 > 0

or,

½ðqP=qV
ð1Þ
Sð1Þ; n

ð1Þ
i

þ ðqP=qVð2ÞÞ
Sð2Þ; n

ð2Þ
i

� < 0 ð7-30Þ

Again, for a homogeneous system, we must have

ðqP=qVÞS; n i
< 0 ð7-31aÞ

or

k ¼ �1=VðqV=qPÞS; n i
> 0 ð7-31bÞ

Note: This condition holds for internal stability of a homogeneous system; it does not

apply to the critical point. For this, the variation of d2E with respect to Vis zero, and

one must go to higher-order differentials, namely, d4E (it can be shown that if

d2E ¼ 0 then d3E ¼ 0), to obtain the conditions for stability.
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Holding all variations fixed except dn
ð1Þ
i ¼ �dn

ð2Þ
i , gives

½ðqmi=qn
ð1Þ
i Þ

Sð1Þ;Vð1Þ;n
ð1Þ
j6¼i

þ ðqmi=qn
ð2Þ
i Þ

Sð2Þ;Vð2Þ;n
ð2Þ
j6¼i

�ðdniÞ2 > 0 ð7-32Þ

This condition is usually expressed in terms of mole fractions. For a two-

component system, the mole fractions in phase 1 are

x
ð1Þ
1 ¼ n

ð1Þ
1 =ðnð1Þ1 þ n

ð1Þ
2 Þ and x

ð1Þ
2 ¼ n

ð1Þ
2 =ðnð1Þ

1 þ n
ð1Þ
2 Þ ð7-33Þ

It is easy to show that

dn
ð1Þ
1 ¼ ðnð1Þ=x

ð1Þ
2 Þdx

ð1Þ
2 ð7-34aÞ

where nð1Þ ¼ n
ð1Þ
1 þ n

ð1Þ
2 and similarly, for phase 2

dn
ð2Þ
1 ¼ ðnð2Þ=x

ð2Þ
2 Þdx

ð2Þ
1 ð7-34bÞ

For species 1

ðxð1Þ
2 =nð1ÞÞðqm1=qx

ð1Þ
1 Þ

Sð1Þ;Vð1Þ; n
ð1Þ
2

þ ðxð2Þ2 =nð2ÞÞðqm1=qx
ð2Þ
1 Þ

Sð2Þ;Vð2Þ; n
ð2Þ
2

> 0

ð7-35Þ

For a homogeneous system,

ðqmi=qxiÞS;V; n i
> 0 ð7-36Þ

7.7 STABILITY CONDITIONS FROM CROSS TERMS

We have so far not considered conditions arising from cross terms. Cross

terms give rise to additional criteria, which can be useful. For example,

the stability conditions for fixed ni, which include cross terms, may be writ-

ten concisely

d2ES;V;ni
¼ 1=2½ðq2E=qS2ÞVðdSÞ2 þ 2ðq2E=qSqVÞdSdV

þ ðq2E=qV2ÞSðdVÞ2� > 0 ð7-37Þ

The quantity within the brackets must be positive for any conceivable

variation in S and V. (Such functions are called positive definitive.) It

can be shown that, for a function to be positive definitive, all roots, l, of
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Eq. 7-38 must be greater than zero

q2E=qS2 � l q2E=qSqV

q2E=qVqS q2E=qV2 � l

�
�
�
�
�

�
�
�
�
�
¼ 0 ð7-38Þ

The l so obtained is

l ¼ 1=2ðq2E=qS2Þ þ ðq2E=qV2Þ � 1=2½ðq2E=qS2 þ q2E=qV2Þ2

� 4ðq2E=qS2Þðq2E=qV2Þ þ 4ðq2E=qSqVÞ2�1=2 ð7-39Þ

If l is to be positive for any conceivable variation of S or V, then

�4ðq2E=qS2Þðq2E=qV2Þ þ 4ðq2E=qVqSÞ2 < 0 ð7-40aÞ

or,

ðq2E=qVqSÞ2 < ðq2E=qS2Þðq2E=qV2Þ ð7-40bÞ

which shows that

ðT=CVÞð�qP=qVÞS > ½ðqT=qVÞS�
2 ð7-40cÞ

7.8 STABILITY CONDITIONS FROM OTHER POTENTIALS

Up to now, we have only considered stability conditions derived from

d2ES;V; n i
, which for ‘‘normal’’ systems in stable equilibrium gave CV � 0,

ðqP=qVÞS;ni
< 0, and ðqmi=qniÞS;V; n j6¼i

> 0. Had we used

iÞ d2HS;P; n i
;we would have obtained CP�0 and ðqmi=qniÞS;P; nj6¼i

>0

ð7-41Þ
iiÞ d2AT;V;ni

;we would have obtained ðq=P!qVÞT;V; n i
< 0

and ðqmi=qniÞT;V; n j6¼i
> 0 ð7-42Þ

iiiÞ d2GT;P;nwe would have obtained ðqmi=qniÞT;P; n j 6¼i
> 0: ð7-43Þ
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7.9 DERIVATIVES OF THERMODYNAMIC POTENTIALS
WITH RESPECT TO INTENSIVE VARIABLES

In the case of ‘‘normal’’ systems (fully heat-conducting, -deformable,

-permeable), the foregoing analyses allowed variations in the extensive vari-

able S, V, and ni but not in the intensive variables T, P, and mi. What can be

said about the derivatives of the thermodynamic potentials with respect to

the intensive variables? Obviously, the technique devised to obtain the deri-

vatives of the potential functions with respect to the extensive variables

cannot be used for intensive variables, as noted before. It makes no sense

to say that, for example, the sum of the temperatures of the two parts of

the system adds up to the total temperature. Nonetheless, there are other

ways to establish the conditions for stable equilibrium of the derivatives

of the thermodynamic potentials with respect to the intensive variables,

simply by deducing them from the conditions of the potentials with respect

to the extensive variables.

In particular, from the condition of stable equilibrium based on

ðq2E=qV2ÞS; n i
> 0, we found that ðqP=qVÞS; n i

< 0.

1) Since, ðq2H=qP2ÞS; n i
¼ ðqV=qPÞS; n i

¼ 1=ðqP=qVÞS; n i
, we obtain

ðq2H=qP2ÞS; n i
< 0 ð7-44aÞ

2) Similarly, from ðq2E=qS2ÞV; n i
> 0, we deduce that

ðq2A=qT2ÞV; n i
¼ �CV=T < 0 ð7-44bÞ

3) From ðq2H=qS2ÞP; n i
, we obtain

ðq2G=qT2ÞP; n i
¼ �CP;n=T < 0 ð7-44cÞ

4) From ðq2A=qV2ÞT; n i
¼ �ðqP=qVÞT; n i

, we get

ðq2G=qP2Þ ¼ ðqV=qPÞT;n < 0 ð7-44dÞ

These results may be summarized as follows: All second derivatives of the

thermodynamic potentials (E,H,A,G) are convex functions of the extensive

variables and concave functions of the intensive variables.
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CHAPTER 8

APPLICATION OF THERMODYNAMICS
TO GASES, LIQUIDS, AND SOLIDS

8.1 GASES

An equation of state is an equation that connects the intensive variables T; P;
V; x1; x2; . . . ; xr�1. The symbol V stands for the volume per unit mass, and

xi stands for the mole fraction of species i. Every system in thermal equili-

brium possesses an equation of state. Equations of state must be determined

experimentally: thermodynamics cannot predict them.

Experimentally, all gases have these properties:

1) As P ! 0, lim PV/RT ¼ 1; that is, the gas behaves as an ideal gas.

2) The gases undergo phase transitions and have a critical point; that is

(qP/qV)T ¼ 0 and (q2P/qV2)T ¼ 0

3) No exact analytical expression exists for an equation of state, but

approximate relations are available, representing ideal gas (Eq. 8-1),

elastic hard sphere (Eq. 8-2)

PV ¼ nRT ð8-1Þ
PðV � bÞ ¼ nRT; ð8-2Þ

Thermodynamics and Introductory Statistical Mechanics, by Bruno Linder
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where b is a constant, and Van der Waals equation (Eq. 8-3)

ðP þ a=V2ÞðV � bÞ ¼ nRT; ð8-3Þ

where a and b are constants.

The van der Waals equation violates the stability conditions in some

regions (as will be shown later) but predicts the existence of a critical point.

Denoting the critical volume, critical pressure and critical temperature,

respectively, as Vc, Pc and Tc, one can show that

Vc ¼ 3b; Pc ¼ a=27b2 and Tc ¼ 8a=27Rb ð8-4Þ

There are other more complicated equations of state (such as the

Beattie-Bridgeman and the Berthelot equation). These are frequently dis-

cussed in physical chemistry books. We will discuss two other equations

of state (the Law of Corresponding States and the Virial Equation of State)

below.

For the Law of Corresponding States, many gases, especially those with

parameters like the van der Waals a and the van der Waals b (in addition to

R), can be fitted into a universal equation of state in terms of reduced

temperature (t¼ T/Tc), reduced pressure (p¼ P/Pc), and reduced volume

(f¼ V/Vc). The Corresponding Law equation of state for a van der Waals

gas is

p ¼ 8t=ð3f� 1Þ � 3=f2 ð8-5Þ

Note that there are no parameters characteristic of the substance.

There are two forms of the Virial Equation of State:

PV ¼ RT½1 þ A2ðTÞP þ A3ðTÞP2 þ � � �	 ð8-6Þ

PV ¼ RT½1 þ B2ðTÞ=V þ B3ðTÞ=V
2 þ � � �	 ð8-7Þ

When solving problems involving enthalpy relations, it is more conveni-

ent to use the virial form in terms of P. However, the values for the virial

coefficients are usually given in term of the B and not the A coefficients.

To relate the A and B coefficients, write P in terms of V, using Equation 8-7

and then substitute those P values in Equation 8-6. Comparing the

coefficients of 1/V gives

PV ¼ RT þ B2ðTÞP þ � � � ð8-8Þ
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Let us consider an example. The van der Waals equation of state (per

mole) in virial form is

ðP þ a=V
2ÞðV � bÞ ¼ RT

or

PV ¼ RTV=ðV � bÞ � a=V ð8-9Þ

Expanding the right-hand side of Eq. 8-9 gives

PV ¼ RT½1 þ b=V þ b2V
2þ	 � a=V

¼ RT½1 þ ðb � a=RTÞ1=V þ � � �	 ð8-10Þ

Thus

B2 ¼ ðb � a=RTÞ ð8-11Þ

Also, using Eq. (8-8) shows that lim
P!0

½qðPVÞ=qP	T ¼ B2(T)

8.2 ENTHALPY, ENTROPY, CHEMICAL
POTENTIAL, FUGACITY

8.2.1 Enthalpy

From the general relation

dH ¼ ðqH=qTÞPdT þ ðqH=qPÞTdP ð8-12Þ

we get, on integration between the limits 1 and 2:

HðT2;P2Þ � HðT1; P1Þ ¼
ð2

1

ðqH=qTÞP dT þ
ð2

1

ðqH=qPÞTdP: ð8-13Þ

This expression is not very useful because (qH/qp)T has to be known over

the entire range of temperatures and pressures. The integral over pressure

causes no problems, even if the lower limit is extended to P ¼ 0, because

at zero pressure the gas behaves ideally. However, the temperature deriva-

tive is generally not known over the full range of temperatures. To get

around this difficulty, it is common practice to treat the integral over T as

an indefinite integral and the integral over P as a definite integral. Referring
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to molar quantities, we write

HðT; PÞ ¼
ðT

ðqH=qTÞP!0dT þ H0 þ
ðP

0

ðqH=qP0ÞTdP0 ð8-14aÞ

¼
ðT

CP!0ðTÞ dT þ H0 þ
ðP

0

½V � TðqV=qTÞP0 	 dP0 ð8-14bÞ

¼ H 0ðTÞ þ
ðP

0

½V � TðqV=qTÞP	 dP0 ð8-14cÞ

where H0(T) is an integration constant, and H 0(T) is the standard enthalpy,

equal to the first two terms on the right of Eq. 14-b.

Note: As P ! 0, the gas behaves as an ideal gas, and E and H depend only on the

temperature (as noted before), as does CP! 0. It is clear that for an ideal gas the

second term is zero and thus,

HðT; PÞ ¼ H ideal gasðT;PÞ ¼ H
0ðTÞ ð8-15Þ

Thus, H 0 (T,P) is the enthalpy of the real gas as P ! 0.

We present an application of the above discussion. For a van der Waals

gas (in virial form), using Eq. 8.8

HðT;PÞ � H 0ðTÞ ¼
ðP

0

dP0ðRT=P0 þ B2 � TR=P0 � TdB2=dTÞ ð8-16aÞ

¼ ðB2 � T dB2=dTÞP ð8-16bÞ

¼ ðb � 2a=RTÞP ð8-16cÞ

8.2.2 Entropy

The problem for entropy is similar to that of enthalpy, but there are addi-

tional complications. The differential form of S (see Eq. 5. 13a) is

dSðT;PÞ ¼ ðqS=qTÞPdT þ ðqS=qPÞTdP ð8-17aÞ

¼ ðCP=TÞdT � ðqV=qTÞPdP ð8-17bÞ

The last term diverges (‘‘blows up’’) as P ! 0, since the gas approaches

ideal gas behavior and (qV/qT)P ! R/P ! 1 as P ! 0. We can get around

this difficulty by adding to both sides of the equation RdP/P ¼ R dln(P/P0)
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(we have included the unit pressure, P0, to make the logarithmic argument

dimensionless). Equation 8-17 then becomes

d½SðT; PÞ þ R lnðP=P
0Þ	 ¼ ½CP!0ðTÞ=T	dT þ ½R=P � ðqV=qTÞ	dP ð8-18Þ

Integrating dT within indefinite limits and dP within definite limits, yields

½SðT; PÞ	 þ R lnðP=P
0Þ ¼

ðT

½CP!0ðTÞ=T	dT þ S0 þ
ðP

0

½R=P0 � ðqV=qTÞP	dP0

ð8-19Þ

SðT; PÞ ¼ S0ðTÞ � R lnðP=P
0Þ þ

ðP

0

½R=P
0 � ðqV=qTÞP0 	dP

0 ð8-20Þ

where S0 is the integrating constant, and S0 is the standard entropy.

For an ideal gas,

S
ideal gasðT;PÞ ¼ S0ðTÞ � R lnðP=P0Þ ð8-21Þ

which shows that the standard entropy S0 is not equal to the entropy of an

ideal gas, except when P ¼ P0. Rather, S0 is the entropy of a ‘‘hypotheti-

cally’’ ideal gas at unit pressure. This is in contrast to the standard enthalpy,

H
0
, which is the enthalpy of the ideal gas without any restrictions.

EXERCISE

Show that the virial entropy expression is

SðT;PÞ ¼ S0ðTÞ � R ln P=P
0 � ðdB2=dTÞP þ � � � ð8-22Þ

8.2.3 Chemical Potential

The chemical potential (or molar Gibbs free energy) can now readily be

obtained by combining H and S

m ¼ HðT;PÞ � TSðT;PÞ
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¼ RT lnðP=P
0Þ þ

ðP

0

½V � RT=P0	dP0

þ
ðT

CP!0ðTÞð1 � T=T
0ÞdT þ ½H0 � T S0	

¼ m0ðTÞ þ RT lnðP=P
0Þ þ

ðP

0

½V � RT=P0	dP0 ð8-23Þ

where m0 is the standard chemical potential.

For an ideal gas, mideal gas(T,P) ¼ m0(T) provided P ¼ P0. Thus, m0(T) is

not the chemical potential of an ideal gas but the chemical potential of a

‘‘hypothetical’’ ideal gas at unit pressure.

EXERCISE

Derive expressions for m(T;PÞ � m0(T)

1) For a gas obeying the virial equation of state

2) For a gas obeying the van der Waals Equation of State

8.2.4 Fugacity

For an ideal gas, the chemical potential has the form

mðT; PÞ ¼ m0ðTÞ þ RT lnðP=P
0Þ ð8-24Þ

This is obviously a very simple expression. Is it possible to write an

expression for the chemical potential of a real gas having a form as simple

as Equation 8-24? The answer is yes. This was first done by G. N. Lewis,

who introduced the concept of ‘‘fugacity,’’ denoted by the symbol f. The

fugacity may be defined as

f ¼ P exp ð1=RTÞ
ðP

0

ðV � RT=PÞdP
0

� �

ð8-25Þ

and so,

ln ðf=P
0Þ ¼ ln ðP=P

0Þ þ 1=RT

ðP

0

ðV � RT=P0ÞdP0 ð8-26Þ
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Comparing Eq. 8-26 with Eq. 8-23 shows that

mðT; PÞ � m0ðTÞ ¼ RT lnðf=P
0Þ ð8-27Þ

which is formally as simple as the ideal gas equation. Thus, the standard

chemical potential is the chemical potential of the real gas at unit fugacity.

The fugacity can be thought of as an ‘‘effective’’ pressure. But is it useful?

According to Guggenheim (1967), ‘‘The simplification obtained by the

introduction of fugacity is one of appearance of elegance, but leads to noth-

ing quantitative unless we express the fugacity in terms of pressure, and so

we are back where we started.’’

EXERCISE

Derive expressions for the fugacity in terms of

1) the virial equation

2) the van der Waals equation

Note that m(T,P) ¼ m0(T) when f (of the real gas) is equal to P0.

8.3 STANDARD STATES OF GASES

There really is no particular state that can be called standard. One may

define standard free energy, standard entropy, and standard enthalpy, but

they do not refer to the same state. As noted previously

1) the standard free energy or standard chemical potential, m0(T), is the

free energy of the actual gas at unit fugacity, f 0;

2) the standard entropy, S0(T), is the entropy of a hypothetical ideal gas

at unit pressure, P0;

3) the standard enthalpy, H0(T), is the enthalpy of the real gas at zero

pressure, P ! 0.

This choice must be made for thermodynamic consistency! Thus, if we

take m0(T) to be the standard chemical potential of a gas, then by the

Gibbs-Helmholtz equation, we have

½qðm0=TÞ=qð1=TÞ	P ¼ H0 ðTÞ ð8-28Þ
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and

ðqm0=qTÞP ¼ �S0ðTÞ ð8-29Þ

which are consistent with the definitions of the standard enthalpy and stan-

dard entropy of the gas.

Note: Standard free energy and standard enthalpy are associated with particular

realizable states (although not the same). The standard entropy does not refer to a

real state but a hypothetical one.

8.4 MIXTURES OF GASES

8.4.1 Partial Fugacity

If we write for species i

miðT; PÞ ¼ m0
i ðTÞ þ RT lnðPi=P0Þ þ

ðP

0

½Vi � RT=P	dP ð8-30Þ

replace Pi by xiP and define fi by

fi ¼ xiP exp 1=RT

ðP

0

ðVi � RT=P
0ÞdP0

� �

ð8-31Þ

or,

ln ðfi=P0Þ ¼ ln xiðP=P
0Þ þ 1=RT

ðP

0

½Vi � RT=P
0	dP0 ð8-32Þ

we obtain,

miðT; PÞ ¼ m0
i ðTÞ þ RT ln ðfi=P0Þ ð8-33Þ

8.4.2 Free Energy, Entropy, Enthalpy, and Volume
of Mixing of Gases

Let the superscript � denote a pure substance. The free energy of the mixture

is represented as G ¼ �imini and that of the pure substances as G� ¼ �im�i ni.
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The free energy of mixing is defined as

�Gmix ¼ �i niðmi � m�i Þ ð8-34Þ

Using Eq. 8-33 and 8-32 gives

�Gmix ¼ RT�ini ln fi=f�i

¼ RT�i ni ln xi þ �ini

ðP

0

ðVi � V
�
i ÞdP0 ð8-35Þ

�Smix ¼ �½q�Gmix=qT	P

¼ �R�ini ln xi � �i ni

ðP

0

½ðqVi=qTÞP00 � ðqV
�
i =qTÞP0 	dP0 ð8-36Þ

�Hmix ¼ �ini

ðP

0

½ðVi � V�
i Þ � TðqVi=qTÞP þ TðqV

�
i =qTÞ	dP0 ð8-37Þ

�Vmix ¼ �iniðVi � V
�
i Þ ð8-38Þ

Note: For a mixture of ideal gases, Vi ¼ V
�
i and

�Gmix ¼ RT �ini ln xi ð8-39Þ
�Smix ¼ �R �ini ln xi ð8-40Þ
�Hmix ¼ 0 ð8-41Þ
�Vmix ¼ 0 ð8-42Þ

8.5 THERMODYNAMICS OF CONDENSED SYSTEMS

Consider a single component, one-phase solid or liquid system. (We will

take up solutions in Chapter 10.)

There is a sharp contrast between gases on one hand and solids and liquids

on the other. In gases (except near the critical point) k¼� 1/V(qV/qP)T and

of the order of 1/P. In condensed systems, k is very much smaller and nearly

constant, i.e.,

k ¼ �1=VðqV=qPÞT  constant ð8-43Þ
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This results in an approximate equation of state, which can be justified by

considering

dV=V ¼ �kdP ð8-44Þ

Integrating between P ¼ 0 and P for fixed T, yields

ð
dV=V ¼ �k

ðP

0

dP0 ð8-45Þ

Thus,

ln½VðT;PÞ=VðT; 0Þ	 ¼ �kP ð8-46Þ

or,

VðT;PÞ  VðT; 0Þe�kP  VðT; 0Þ ð1 � kPÞ ð8-47Þ

where V(T,0) is the molar volume extrapolated to P ¼ 0. Further simplifica-

tion is achieved by replacing V(T,0) by V(0,0), which is permissible because

a¼ 1/V(qV/qT)P is of the order of 10�3 T�1 or even smaller.

8.5.1 The Chemical Potential

Starting with the differential form

dm ¼ ðqm=qTÞPdT þ ðqm=qPÞTdP ð8-48aÞ

and using an indefinite limit for the T integration and definite limits for the P

integration, we obtain

mðT; PÞ ¼
ðT

ðqm=qTÞP!0 þ m0 þ
ðP

0

VdP0 ð8-48bÞ

¼ m0ðT;P ¼ 0Þ þ PVðT; 0Þ ð1 � 1
2
k PÞ ð8-48cÞ

Note: Variation of m with pressure is very different for condensed systems than for

gases. For solids, k is of the order of 10�6 atm�1; for liquids, it is approximately

10�4 atm. In essence, (1 � 1=2kmP)  1. In other words,m(T,P) varies linearly with

PV(T,0). (For gases, the variation is logarithmic.) Moreover, for most liquids and

solids, V ranges between 10 and 100 cm3, so that PV  0:1 atm �L. (For gases, PV is

of the order of RT, i.e., 20 atm �L) Thus, for condensed systems, PV is negligible,

and we may set m(T,P) equal to m0 (T,P ¼ 0), without making serious errors.
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Note: Because PV is small or negligible in comparison with RT, there is little difference

between E and H and between A and G.

8.5.2 Entropy

The entropy is obtained at once from m (T,P)

S ¼ �ðqm=qTÞP

 S0ðT;P ¼ 0Þ � aPVðT; 0Þð1 � 1
2
kPÞ ð8-49aÞ

¼ S0ðT;P ¼ 0Þ ð8-49bÞ

8.5.3 Enthalpy

H ¼ mþ TS

¼ H0ðT; P ¼ 0Þ þ PVðT; 0Þð1 � aTÞð1 � 1
2
kPÞ ð8-50aÞ

 H0ðT; P ¼ 0Þ ð8-50bÞ
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CHAPTER 9

PHASE AND CHEMICAL EQUILIBRIA

In this chapter, we consider two types of equilibriums, equilibrium between

heterogeneous phases and chemical reaction equilibrium. The treatment will

not be exhaustive but will rather focus on procedures and topics not likely to

be covered in elementary physical chemistry courses.

9.1 THE PHASE RULE

The phase rule reads

v ¼ c þ 2 � p ð9-1Þ

where c stands for the number of components, p the number of phases, and v

the variance (or degrees of freedom). The variance is defined as the number

of independent intensive variables that can be specified in a heterogeneous

equilibrium.

The phase rule is easy to derive. Let r denote the number components

present and a the number of phases. In a particular phase, the following

intensive variables are present: TðaÞ; PðaÞ; x
ðaÞ
1 ; . . . ; x

ðaÞ
r�1. Thus, there
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are ðr þ 1Þ intensive variables present in one phase. In all a phases, there are

aðr þ 1Þ intensive variables. However, not all variables are independent.

For ‘‘normal’’ systems, which we are considering here, all phases have

the same temperature, the same pressure, and the same chemical potential

of each species, i. In short, numerous variables are equal to each other as

shown in Table 9.1 Each time the values of two variables are set equal,

the number of independent variables decreases by one. Table 9.1 shows

that there are ðr þ 2Þ lines, each line contributing ða� 1Þ equal signs.

Thus the total number of equal signs is ðr þ 2Þða� 1Þ, reducing the number

of intensive variables by that amount. Accordingly, the number of inde-

pendent intensive variables, i.e., the variance, is v ¼ �aþ r þ 2 or, in

more standard notation (replacing a by p, and r by c), is the expression

given by Eq. 9-1.

Note: We emphasize that this well-known formula for the phase rule (Eq. 9-1) holds

only if the external force is a uniform pressure, the interphase surfaces are fully

heat-conducting, deformable, and permeable, and there are no chemical reactions

between the components.

Example

In a one-component system

v ¼ 2 if p ¼ 1;

v ¼ 1 if p ¼ 2; and

v ¼ 0 if p ¼ 3

ð9-2Þ

Figure 9.1 shows a typical phase diagram of a one-component system.

(Phase diagrams of multi-component systems will not be covered in this

book. Readers who want to study these are advised to consult some good

undergraduate physical chemistry textbooks.)

TABLE 9.1 Intensive Variables in a Phases

Tð1Þ ¼ Tð2Þ . . . ¼ TðaÞ ða� 1Þ equal signs

Pð1Þ ¼ Pð2Þ . . . ¼ PðaÞ ‘‘

mð1Þ1 ¼ mð2Þ1 . . . ¼ mðaÞ1 ‘‘

mð1Þr ¼ mð2Þr . . . ¼ mðaÞr ‘‘
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9.2 THE CLAPEYRON EQUATION

Consider a one-component, two-phase system in equilibrium. Suppose the

system is characterized by the point P�, T� on one of the coexisting curves

(see Figure 9.1). The change to a neighboring point P� þ dP, T� þ dT will

necessitate also changing the chemical potential from m to mþ dm. We know

from elementary considerations (or from Legendre transformations) that for

a single phase, a,

dma ¼ �ðSa=nÞdT þ ðVa=nÞdP ¼ �SadT þ VadP ð9-3Þ

If two phases, a and b coexist, then ma ¼ mb and ma þ dma ¼ mb þ dmb.

Thus,

dma ¼ dmb

�SadT þ VadP ¼ �SbdT þ VbdP
ð9-4Þ

or

ðdP=dTÞcoex ¼ ðSb � SaÞ=ðVb � VaÞ

¼ �S=�V ð9-5Þ

This is the Clapeyron Equation. A more useful form is

ðdP=dTÞcoex ¼ �H=ðT�VÞ ð9-6Þ

liquid

solid

vapor

T

P

P*, T*

Figure 9.1 Phase diagram of a one-component system.
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9.3 THE CLAUSIUS-CLAPEYRON EQUATION

The Clausius-Clapeyron Equation is an approximation, used frequently in

discussing solid-vapor and liquid-vapor equilibria. The basic idea is that

V solid and V liquid are small in comparison with the volume of the gas, and

so can be neglected. For liquid-vapor, we have

dP=dT ¼ ðHv � HlÞ=TðVv � V1Þ � �Hvap=TVv ð9-7Þ

Treating the vapor as an ideal gas, we get

dP=dT � �HvapP=TRT ð9-8aÞ

and assuming that �Hvap varies negligibly with temperature, we obtain

ð
dP=P �

ð
ð�Hvap=RT2ÞdT � �Hvap

R

ðT2

T1

dT

T2
ð9-8bÞ

which gives, the Clausius-Clapeyron equation

lnðP2=P1Þ � �Hvap=Rð1=T1 � 1=T2Þ � �Hvap=R½ðT2 � T1Þ=T1T2	 ð9-9Þ

Similarly, for solid-vapor equilibrium,

lnðP2=P1Þ � �Hsub=R½ðT2 � T1Þ=T1T2	 ð9-10Þ

The Clapeyron and Claussius-Clapeyron equations are powerful tools for

constructing phase diagrams of the types shown in Figure 9.1. The behavior

of the coexistence curves can actually be inferred from qualitative

considerations of the relative magnitudes of the �H and �V values of

the coexistence curves. For solid-vapor equilibrium and for liquid-vapor

equilibrium, the �V values are essentially of the same order of magnitude,

but the enthalpy of sublimation always exceeds the enthalpy of vaporization,

that is, �Hsubl > �Hvap, and so the slope of the solid-vapor curve is

expected to be greater than that of the liquid-vapor curve. The solid-liquid

�H, that is, �Hfusion, is generally small, but the �V fusion is usually very

small (and sometimes negative). The solid-liquid slope is likely to be very

large. Thus, one can expect the slope of the solid-vapor curve to be larger

than that of the liquid-vapor curve and the slope of the solid-liquid curve to

be largest (and sometimes negative). These predictions are borne out by

experiment.

THE CLAUSIUS-CLAPEYRON EQUATION 97



9.4 THE GENERALIZED CLAPEYRON EQUATION

The foregoing analysis of the Clapeyron Equation is based on the assump-

tion that the system is ‘‘normal’’ and thus there is uniform temperature,

uniform pressure, and uniform chemical potential throughout the phases.

What if there are restrictions, for example, when the inter-phase boundary

is semi-deformable so that the pressure on the liquid (the applied pressure!),

P l, is not equal to the vapor pressure, Pv? How can the Clapeyron Equation

be modified to apply to this situation? This is, in principle, possible by

subjecting the liquid to a membrane at extremely high pressures; in practice,

however, it can be accomplished by adding to the vapor phase an inert

gas, which is insoluble in the liquid phase. Under such circumstances,

the vapor consists of two (or more) species; the liquid phase has only one

substance, say, species i. Yet, the chemical potentials of i, that is, mv
i and ml

i,

are the same in both phases, as are also the temperatures but not the

pressures: Pv
i 6¼ P l

i . Dropping the subscript i to simplify the notation,

we get

�S ldT þ V ldP l ¼ �S vdT þ V vdP v ð9-11Þ

which yields

1Þ ðqPv=qTÞPl ¼ �Hvap=TVv ¼ ½ðSv � SlÞ=Vv	 ð9-12Þ

2Þ ðqPv=qPlÞT ¼ V l=Vv ð9-13Þ

3Þ ðqPl=qTÞPv ¼ ��Hvap=TV l ¼ ½�ðSv � SlÞ=V l	 ð9-14Þ

EXAMPLE

Under what applied pressure would water at 99.999�C or 373.149 K exhibit

a vapor pressure of 1 atm? The specific heat of vaporization of water is

540 cal; the specific volume is 1 cm3.

SOLUTION

We know that under normal conditions the applied or liquid pressure is the

same as the vapor pressure, namely 1 atm, at the normal boiling point of

373.150 K. Holding Pv constant and integrating Eq. 9.14) from T ¼ 373:150 K
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to 373.149 K yields the final applied pressure, Pl

Pl � 1 � �ð�Hvap=V lÞ lnð373:149=373:150Þ ð9-15Þ

9.5 CHEMICAL EQUILIBRIUM

Thermodynamic aspects of chemical reactions are almost always formulated

on the basis of the Gibbs free energy. This is not absolutely necessary. We

can also arrive at the fundamental relations between the equilibrium con-

stant and the thermodynamic properties of the reacting substances from

other thermodynamic potentials. Because our focus in deriving equilibrium

and stability conditions in the preceding chapters has been on the internal

energy E, we shall show here that E can be used to derive equilibrium con-

ditions for chemical reactions.

Consider the reaction,

aA þ bB þ � � � ¼ cC þ dD þ � � � ð9-16Þ

written simply as

�inidwi ¼ 0 ð9-17Þ

which is interpreted to mean that the stochiometric coefficient ni is positive

(þ) when the substance wi is a product and negative (�) when the substance

wi is a reactant.

Introducing the variable x, called the progress variable or degree of

advancement, the change in mole numbers becomes dni ¼ nidx, meaning

that, for example, when dnA ¼ nAdx, dnA moles of A disappear and when

dnC ¼ nCdx, dnC moles of C are created. Using the energy criterion for

equilibrium discussed earlier, we require that

dð1ÞES;V  0 ð9-18Þ

Note that in this expression the constraint that the ni is constant is missing.

This is so because here we are dealing with chemical reactions and the mole

numbers are changing. Because

dE ¼ TdS � PdV þ �inimidni ð9-19Þ
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we have

ðdð1ÞEÞS;V ¼ �iðqE=qniÞS;V;nj 6¼i
dni ¼ �imidni  0 ð9-20Þ

¼ �iminidx  0 ð9-21Þ

Note: The quantity �inimi, denoted as �m, is sometimes called ‘‘reaction potential,’’

and its negative, ��m ¼ ��inimi, is called ‘‘affinity.’’

Now, let us consider a virtual variation dx, which takes the reacting mix-

ture away from equilibrium under the constraints of constant S and V. If

dx > 0, then �inimi  0, indicating that at equilibrium the reaction potential

was either zero or positive. If dx < 0, then �inimi � 0, indicating that the

reaction potential at equilibrium was zero or negative. Obviously, the only

consistent result is

�m ¼ �inimi ¼ 0 ð9-22Þ

The same identical result would have been obtained had we used any of the

other thermodynamic potentials: HðS;P; niÞ, AðT;V; niÞ, or GðT; P; niÞ. In

short, the results are independent of the various constraints, and Eq. 9-22

is the appropriate criterion for chemical equilibrium.

9.6 THE EQUILIBRIUM CONSTANT

The foregoing thermodynamic treatment of chemical equilibrium must,

from a chemist’s point of view, be disappointing because there is no mention

of an equilibrium constant. Before we can define an equilibrium constant,

we must introduce a new concept, namely, the activity ai. This concept

will be discussed in more detail in Chapter 10. For the time being, let us

think of the activity as an ‘‘effective’’ concentration or ‘‘effective’’ pressure.

(For gases, the activity is the same as the fugacity.)

In general, the chemical potential of a given species is a function of T and

P and the mole fractions of all species. The activity is defined by writing

miðT; P; x1; x2; . . . ; xr�1Þ ¼ m0
i ðT; PÞ þ RT ln aiðT; P; x1; . . . ; xr�1Þ ð9-23Þ

(For a gas, the standard chemical potential, m0
i , is independent of pressure.)

It is obvious that the activity will depend on the choice of the standard

state. The choice is strictly a matter of convention, which varies from gases

to pure substances and from pure substances to solutions, etc.
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Substituting Eq. 9-23 into Eq. 9-22 gives

�m ¼ �m0 þ RT �ini ln ai ¼ 0 ð9-24Þ

Consequently,

�m0 ¼ �inim0
i ¼ �RT ln �ia

n1

i � �RT ln Ka ð9-25aÞ

where �i stands for the product an1

1 an2

2 � � �
Accordingly

Ka ¼ e��m0=RT ð9-25bÞ

where Ka is the equilibrium constant defined here in terms of the activities.

It should be noted that the activities are dimensionless. Also, it is impor-

tant to keep in mind that the equilibrium constant is not related to the

reaction potential of the real mixture (which is zero) but to the reaction

potential of the substances in their standard states.

Finally, because �m0 is a free energy change, the Gibbs-Helmholtz

Equation applies

ðqð�m0=TÞ=qTÞP ¼ ��H 0=RT2 ð9-26aÞ

where

�H 0 ¼ �iniH
0

i ð9-26bÞ

Using 9-25a and 9-26b yields

ðq ln Ka=qTÞP ¼ �H 0=RT 2 ð9-27Þ

It also follows from ðq�m0=qPÞT ¼ �V ¼ �iniV
0

i that

ðq ln Ka=qPÞT ¼ ��V 0=RT ð9-28Þ
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CHAPTER 10

SOLUTIONS—NONELECTROLYTES

We have already discussed mixtures of gases. In Chapter 10, we present a

more general discussion of mixtures and treat in some detail binary

solutions of solids in liquids, with special emphasis on dilute solutions.

Only nonelectrolytes will be considered. The main focus in this chapter,

as in the previous, will be on the generality of the method.

10.1 ACTIVITIES AND STANDARD STATE CONVENTIONS

We have introduced the concept of activity in Equation 9-23. This concept is

really a figment of the mind. The only quantity that has a thermodynamic

base is the chemical potential of the system, mi. The standard chemical

potential, m0
i , and activity, ai, are arbitrary and depend on the convention

adopted for defining them. In mixtures, it is customary to choose a reference

or standard state that is independent of mole fractions but dependent on

temperature and often also on pressure.

10.1.1 Gases

Recall that for gases

miðT; PÞ ¼ m0
i ðTÞ þ RT ln fi=P0 ð10-1Þ
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we take the standard state (as before) to be

m0
i ðT; PÞ ¼ m0

i ðTÞ ð10-2Þ

which then defines the activity

ai ¼ fi=P0 ð10-3Þ

10.1.2 Pure Liquids and Solids

Here, we take the standard state to be the state of the pure substance i. So,

m0
i ðT;PÞ ¼ m�i ðT; PÞ ð10-4aÞ

and

ai ¼ 1 ð10-4bÞ

10.1.3 Mixtures

There are three ways to define standard states: (1) in terms of mole fractions,

xi (rational basis); (2) in terms of molality, mi [i.e., moles of solutes in 1 kg

of solvent (molal basis)]; and (3) in terms of molarity, ci [i.e., moles of

solutes in 1 liter of solution (molar basis)]. The activity is often written

as a product of an activity coefficient and a concentration factor: ai ¼
gðxÞi xi (rational basis), ai ¼ gi m

ðmÞ
i (molal basis), and ai ¼ gðcÞi ci (molar

basis). We will use only the rational basis (x) here to illustrate the treatment

of solutions.

Let species ‘‘1’’ refer to the solvent and the other species, i ¼ 2, i ¼ 3,

etc., refer to the solutes. In some solutions, no fundamental difference exists

between solute and solvent: the species in greater abundance is called the

solvent. This is generally true of liquid-liquid mixtures. In other cases, such

as solid-liquid mixtures there is a discernable difference between solute and

solvent. These two types of solutions behave so differently that they are gen-

erally treated by different conventions. By one convention (denoted here as

Con I), the standard chemical potential, m0, is the chemical potential of the

pure substance, regardless of whether the substance is the solute or the sol-

vent. By the other convention (denoted here as Con II), the standard chemi-

cal potential of the solvent is that of the pure solvent, but the standard

chemical potential of the solute is not that of the pure solute; rather, it is

the chemical potential of a state, which is not a true state of the solute.
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10.1.3.1 Liquid–Liquid Solutions—Convention I (Con I) Here,

we take the standard state to be the state of the pure substance, regardless

whether the substance is the ‘‘solvent’’ or a ‘‘solute’’. Thus, for each

species, i

m0
i ðT;PÞ ¼ m�i ðT; PÞ ð10-5Þ

ai ¼ gixi ð10-6Þ

10.1.3.2 Solid-Liquid Solutions—Convention II (Con II) Here,

the chemical potential of the pure solvent (species ‘‘1’’) is taken to be the

standard chemical potential. Thus

m0
1ðT; PÞ ¼ m�1ðT; PÞ ð10-7Þ

m0
i ðT; PÞ 6¼ m�i ðT; PÞ i 6¼ 1

¼ lim
xi!0

ðmi � RT ln xiÞ ð10-8Þ

Note: This Con II is used almost exclusively for ideally dilute solutions (defined

below). The solute mole fraction for such solutions approaches zero, and the solvent

mole fraction approaches one. The activity coefficient of the solvent is essentially

one, and the activity of the solvent is basically the same as the mole fraction, i.e.,

a1 	 x1. The reason solutes and solvents behave so different in infinitely dilute

solutions is because the environment of a solvent molecule is basically the same as

that for the pure solvent, but the environment of the solute molecule differs radically

from that of the pure solute.

10.2 IDEAL AND IDEALLY DILUTE SOLUTIONS;
RAOULT’S AND HENRY’S LAWS

10.2.1 Ideal Solutions

In elementary treatments, it is standard to define an ideal solution as one in

which each component obeys Raoult’s Law. Raoult’s Law states that the

fugacity of each component i (regardless of whether it is a solute or the

solvent) is equal to the mole fraction of i in the liquid phase times the fuga-

city of pure i, i.e.

fi ¼ xif
�
i ð10-9Þ
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or, (as is more common although less precise), in terms of the partial pres-

sure of i, Pi , and pressure of the pure substance, P�
i

Pi ¼ xi P�
i ð10-10Þ

Ideal solutions can be defined in another way, by focusing on the proper-

ties of the solution rather than on the vapor. From this standpoint, an ideal

solution is defined as one whose components satisfy the relation

miðT; P; xiÞ ¼ m�i ðT;PÞ þ RT ln xi i ¼ 1; 2; . . . ð10-11Þ

We assume that the relation holds over the entire range of compositions. To

be specific, let us consider a liquid-vapor equilibrium. We must have

mv
i ¼ m1

i ð10-12Þ
m0v

i ðTÞ þ RT ln ðfi=P0Þ ¼ m0l
i ðT;PÞ þ RT ln xi ð10-13Þ

Thus

fi=P0 ¼ xi exp½ðm0l
i � m0v

i Þ=RT� ð10-14aÞ
¼ xi exp½ðm�l

i � m0v
i Þ=RT� ð10-14bÞ

For pure i

f�i =P0 ¼ exp½ðm�l
i � m0v

i Þ=RT� ¼ exp½ðm�l
i � m�v

i Þ=RT� ð10-15Þ

This shows that

fi ¼ xif
�
i ð10-16Þ

which is Raoult’s Law.

10.2.2 Ideally Dilute Solutions

For all solutions, when sufficiently dilute, the solvent obeys Raoult’s Law

but the solute does generally not. Rather, the solute obeys Henry’s Law:

fi ¼ xi kH i 6¼ 1 ð10-17Þ

where kH is Henry’s Law constant. In general, kH differs from f�i . When they

are equal, the solution is ideal.
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It can be shown that, in the range in which the solvent obeys Raoult’s

Law, the solute will obey Henry’s Law. In elementary treatments, this is nor-

mally proved by applying the fundamental relation �i nidmi ¼ 0 (the Gibbs-

Duhem equation) and differentiating the chemical potentials with respect to

xi. Here, we establish this result in another way. We define an ideally dilute

solution as one in which each component (in the liquid phase) obeys the

relation

mi ¼ m0
i þ RT ln xi ð10-18Þ

Note: This expression is of the same form as the expression for an ideal solution, but

there is a difference In an ideal solution, m0
i ¼ m�i , irrespective of whether i

represents the solute or the solvent, but, in an ideally dilute solution,m0
i 6¼ m�i when i

is not the solvent.

Let us assume again that we are dealing with a binary, liquid-vapor,

system. We equate the chemical potential of each of the species in the liquid

with that in the vapor and obtain

m�l
1 þ RT ln x1 ¼ m0v

1 ðTÞ þ RT lnðf1=P0Þ ð10-19Þ
m0l

2 þ RT ln x2 ¼ m0v
2 ðTÞ þ RT lnðf2=P

0Þ ð10-20Þ

Accordingly

lnðf2=P
0Þ ¼ ðm0l

2 � m0v
2 Þ=RT þ ln x2 ð10-21Þ

or

f2=P
0 ¼ x2 exp½ðm0l

2 � m0v
2 Þ=RT� ð10-22Þ

By identifying the exponential factor on the right with kH/P0

kH=P0 � exp½ðm0l
2 � m0v

2 Þ=RT� ð10-23Þ

we get

f2 ¼ x2kH ð10-24Þ

which is Henry’s Law.

Note: kH is independent of x2 but is dependent on P because m0l
2 depends on P (as well

as on T). But the dependence on P is weak and varies slowly so that kH is practically

constant except at very high pressures.
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Note: kH=P
0 6¼ f�2=P0, the latter is equal to exp ½ðm�l

2 � m0v
2 Þ=RT�

Thus

f0
1 ¼ f�1

but
f0
2 6¼ f�2 ð10-25Þ

10.3 THERMODYNAMIC FUNCTIONS OF MIXING

In general

miðT;P; xiÞ ¼ m0
i ðT; PÞ þ RT ln gixi ð10-26Þ

�Gmix ¼ G � �iniG
�
i ¼ �in

�
i ðmi � m�i Þ ð10-27Þ

10.3.1 For Ideal Solutions

�Gmix ¼ RT�ini ln xi ð10-28Þ
�Smix ¼ �R�ini ln xi ð10-29Þ
�Hmix ¼ 0 ð10-30Þ
�Vmix ¼ 0 ð10-31Þ

10.3.2 For Nonideal Solutions

For Liquid-liquid mixtures (Con I)

m0
i ¼ m�i all i ð10-32Þ

�Gmix ¼ �iniðmi � m0
i Þ þ �iniðm0

i � m�i Þ ð10-33aÞ
�Gmix ¼ RT�ini ln gixi þ 0 ð10-33bÞ

¼ RT�ini ln xi þ RT�ini ln giðT; P; x1; . . . ; xrÞ ð10-34aÞ
� �Gideal

mix þ�Gexcess
mix ð10-34bÞ

�Smix ¼ �R�ini ln xi � ½qð�Gexcess
mix =qTÞ�P;n ð10-35Þ

¼ �Sideal
mix þ�Sexcess

mix

�Hmix ¼ 0 þ ½qð�Gexcess
mix =TÞqð1=TÞ�P;n ð10-36Þ

�Vmix ¼ 0 þ ½q�Gexcess
mix =qP�T;n ð10-37Þ

THERMODYNAMIC FUNCTIONS OF MIXING 107



For Solid-Liquid mixtures (Con II)

m0
1 ¼ m�1 solvent ð10-38aÞ

m0
i 6¼ m�i solute i ¼ 2; 3; . . . ð10-38bÞ

�Gmix ¼ �iniðmi � m0
i Þ þ �iniðm0

i � m�i Þ ð10-39aÞ
¼ RT�ini ln xi þ RT�ini ln gi þ �i6¼1niðm0

i � m�i Þ ð10-39bÞ
�Smix ¼ �R�ini ln xi � R�ini ln gi � RT�iniðq ln gi=qTÞP;n

� �i6¼1niðS
0

i � S
�
i Þ ð10-40Þ

�Hmix ¼ RT�iniðq ln gi=qTÞP;n þ �i6¼1niðH 0
i � H

�
i Þ ð10-41Þ

�Vmix ¼ RT�iniðq ln gi=qPÞT;n þ �ini6¼1 ðV 0
i � V

�
i Þ ð10-42Þ

10.4 COLLIGATIVE PROPERTIES

The lowering of the chemical potential of the solvent in solutions has a pro-

found effect on several properties of the system, collectively referred to as

colligative properties. They include

1) lowering of solvent vapor pressure

2) depression of freezing point

3) elevation of boiling point, and

4) osmotic pressure.

The word colligative means that the properties depend only on the quan-

tity (amount) and not on the identity of the solutes. Colligative properties

are most commonly applied to very dilute (ideally dilute) solutions and

usually to solutions in which the solute (we will here focus only on one)

is nonvolatile. We will refer to the solvent as A and the solute as B. Non-

ionic substances only will be treated.

10.4.1 Lowering of Solvent Vapor Pressure

This topic was discussed already in Section 10.2 in some detail and need not

be repeated here. In all solutions, mA ¼ m0
A þ RT ln aA and the nonideality of

the vapor can be ignored; thus we can set aA ¼ PA/P0. Employing Raoult’s

Law, PA ¼ xAP� gives aA ¼ xAP�/P0 and for the pure solvent a�A ¼ P�
A=P0

A.

Because m0 ¼ m�, we conclude that

aA < a�A; mA < m�A; and PA < P�
A ð10-43Þ
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10.4.2 Freezing Point Depression

Figure 10.1 depicts the variation of m with T for a pure solid A, pure liquid

A, and solution, A and B. The solution is very dilute; the solute B is non-

volatile. The normal freezing point, that is, the freezing point of the pure

liquid, is denoted as Tf
. The freezing point of the solution is denoted as

Tf. It is apparent from Figure 10.1 that Tf is lower than T
f .

For the pure solid

mAðsÞ ¼ m0
AðsÞ ¼ m�AðsÞ ð10-44Þ

For the solvent

mAðlÞ ¼ m�AðlÞ þ RT ln xA ð10-45Þ

and for solid-liquid equilibrium

mAðsÞ ¼ mAðlÞ ð10-46Þ
m�AðsÞ ¼ m�AðlÞ þ RT ln xA

¼ m�AðlÞ þ RT lnð1 � xBÞ
	 m�AðlÞ � RT xB ð10-47Þ

Let us define �m¼ m�AðlÞ � m�AðsÞ. It is clear that, when T ¼ T
f , xB ¼ 0

and so

�mðT
f Þ ¼ 0 ð10-48Þ

pure solid, A

pure liquid, A

solution, A+B

T

µ

Tf Tf
*

*

Figure 10.1 Plot of m vs. T for pure solid, pure liquid, and solution solvent.
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On the other hand, when T ¼ Tf

�mðTfÞ ¼ RTxB ð10-49Þ

Applying the Gibbs-Helmholtz equation yields

½qð�m=TÞ=qT�P ¼ ��Hfus=T2 ð10-50Þ

where �Hfus is the molar enthalpy of fusion.

Assuming that �Hfus is essentially constant in the small temperature

range between T
f and Tf, integration between the limits Tf and T

f yields

�mðT
f Þ ��mðTfÞ ¼ ��Hfus lnðT

f =TfÞ ð10-51Þ

Using Eqs. 10.48 and 10.49 and defining �Tf ¼ T
f � Tf, we obtain

�RTfxB ¼ ��Hfus lnð1 þ�Tf=TfÞ ð10-52Þ

which, upon expanding

lnð1 þ�Tf=TfÞ 	 �Tf=Tf ð10-53Þ

gives

xB 	 ð�Hfus=RÞð�Tf=T2
f Þ ð10-54Þ

or

�Tf ¼ xB½RTf
2=�Hfus� ð10-55Þ

The quantity within square brackets in Equation 10-55 is freezing point

constant, which was obtained here on the rational basis. It is more common

to use the molal basis. This can readily be obtained by replacing xB by nB/

(nA þ nBÞ 	 nB=nA since nB is much smaller than nA. By taking the weight

of the solvent to be 1 kg and expressing the molar weight (MA) in kg/mol,

we have nA ¼ 1/MA and the molality of B is mB ¼ nB MA. Accordingly

�Tf ¼ ½RT2
f MA=�Hfus�mB ¼ KfmB ð10-56Þ

For water, the cryogenic constant, Kf, is

Kf ¼ ð18:015 � 10�3 kg=molÞð8:314 J � K�1 � mol�1Þ
� ð273:15 KÞ2=ð6008 J=molÞ

¼ 1:86 K � kg � mol�1 ð10-57Þ
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10.4.3 Boiling Point Elevation

Figure 10.2 is a schematic diagram of the variation of m with T of the pure

vapor, the pure solvent and the solvent in solution. There are three differ-

ences between this diagram and the depression of freezing point diagram

(Fig. 10.1). The pure solid curve has been replaced by the pure vapor curve,

and the normal boiling point, T
b, lies below the boiling point, Tb, of the

solution. It is obvious that the transition between solid and liquid has to

be replaced by the transition from vapor to liquid, or by ��Hvap, which

has the opposite sign to �Hfus. If we define �Tb ¼ Tb � T
b, which also

has the opposite sign to �Tf, it is clear that the expression for the ebullio-

scopy constant ought to be the same as for the cryogenic constant, except for

the replacement of �Hfus by �Hvap and �Tf by �Tb. The final expression

for the elevation of the boiling point becomes

�Tb ¼ ½RT2
b MA=�Hvap�mB ¼ Kb mB ð10-58Þ

EXERCISE

Derive Eq. 10-58 and evaluate the ebullioscopy constant Kb for H2O.

ð�Hvap ¼ 40:656 kJ=mol and T
b ¼ 373:15 KÞ

pure liquid, A*

pure vapor, A

solution, A + B

T

µ

TbTb*

Figure 10.2 Plot of m vs. T for pure, vapor pure liquid and solution solvent.
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10.4.4 Osmotic Pressure

In discussing the depression of the freezing point and elevation of the boil-

ing point, it was tacitly assumed that the pressure was constant. The treat-

ment of osmotic pressure is based on the notion that the temperature is

constant, but the properties of the solution change with pressure.

As a working model, consider two vessels separated by a semi-permeable

membrane. On the left (Fig. 10.3) is pure A. On the right is a solution of

solvent A and solute B. The membrane is permeable to A but not to B.

Obviously, the chemical potential of A on the right is lower than the chemi-

cal potential on the left. Matter (A) will flow from left to right, causing the

liquid on the right to rise. The extra pressure, �, that must be applied to

prevent liquid flow from left to right is the osmotic pressure. If P denotes

the atmospheric pressure, then at equilibrium

mA;LðPÞ ¼ mA;RðP þ�Þ ð10-59Þ

Again, assuming that we are dealing with a very dilute solution, we can

write

mA;LðPÞ ¼ m�A;LðPÞ ð10-60Þ
mA;RðP þ�Þ ¼ m�A;RðP þ�Þ þ RT ln xA ð10-61Þ

and thus,

m�A;LðPÞ ¼ m�A;RðP þ�Þ þ RT ln xA ð10-62Þ

A

P P + π

L R

A + B

Figure 10.3 Schematic representation of two vessels, separated by a semi-permeable

membrane. P is the atmospheric pressure, and � is the extra (osmotic) pressure necessary to

prevent flow of solvent a from L to R.
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Recall that

dm ¼ �SdT þ VdP and thus at constant T ðqm=qPÞT

¼ V ðwhere V refers to the molar volumeÞ: Hence

dm�A;R ¼ V
�
A dP ðconstant TÞ ð10-63Þ

Integrating between the limits P and (P þ�) and assuming that the liquid is

incompressible, we get

m�A;RðP þ�Þ � m�A;RðPÞ ¼ V
�
A

ðPþ�

P

dP0 ¼ V
�
A � ð10-64Þ

Thus

m�A;LðPÞ ¼ m�A;RðPÞ þ V
�
A�þ RT ln xA ð10-65Þ

Because m�A;LðPÞ ¼ m�A;RðPÞ, we have

� ¼ ð�RT=V
�
AÞ ln xA ¼ ð�RT=VAÞ lnð1 � xBÞ 	 ðRT=V

�
AÞ xB ð10-66Þ

In very dilute solutions, xB ¼ nB/(nA þ nB) 	 nB/nA and so

� ¼ ðRT=V
�
AÞðnB=nAÞ ¼ RT nB=V

�
A ð10-67Þ

where V�
A is the actual volume of the fluid; thus

� ¼ RT cB ð10-68Þ

where cB is the concentration of B in the right vessel. This equation is also

known as the van ’t Hoff equation.

Note: Osmotic pressure measurements are useful to obtain molecular weights of high

polymers because their concentrations, cB, are exceptionally low. For example, a

solution of 1 g of solute B in 100 g of H2O gives�Tf ¼� 0.002�C, but� ¼ 19 Torr

at 25�C.
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CHAPTER 11

PROCESSES INVOLVING WORK OTHER
THAN PRESSURE-VOLUME WORK

It was mentioned earlier that work could take on various forms. Continuing

to define work when done on the system to be positive, we may represent the

element of work as

dw ¼ �iXidxi ð11-1Þ

where Xi is a generalized force and xi a generalized displacement. We

already gave a summary of various types of work in Chapter 2. Here, we

will be concerned with three types of work:

1) Xdx $ �PdV pressure-volume work; P ¼ pressure and V ¼ volume

2) Xdx $ sdA film enlarging; s ¼ surface tension and A ¼ area

3) Xdx $ fdL stretching rubber; f ¼ tensile strength and L ¼ length

ð11-2Þ

These forms can be used separately or in combination. Although, strictly

speaking, work associated with surface enlargement or wire stretching can-

not be treated independently of pressure-volume work, the effect is so small

that it is generally an excellent approximation to ignore pressure-volume

effect. For example, if a piece of rubber of length L and cross-section A
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is stretched, then as L increases A will decrease, so that the volume change is

small or negligible. Thus, in first approximation, the pressure-volume part of

the work may be neglected. The same holds true for surface enlargement.

Still, it is instructive to consider more than one type of work because this

clearly illustrates the generality of the approach. We will divide the treat-

ment into two parts. In Section 11.1 we will discuss P-V work in combina-

tion with one other type. In Section 11.2, we will concentrate on one type of

work and discuss in some detail the application of thermodynamices to P-V

work, sA work, and fL work.

11.1 P-V WORK AND ONE OTHER TYPE OF WORK

Using E ¼ EðS;V; y; niÞ gives

dE ¼ TdS � PdV þ Ydy þ �imidni ð11-3Þ

and

E ¼ TS � PV þ Yy þ �imini ð11-4Þ

Using Legendre transformations or standard definitions (H ¼ E þ PV,

A ¼ E � TS, G ¼ H � TS), yields

dH ¼ TdS þ VdP þ Ydy þ �imidni ð11-5Þ

dA ¼ �SdT � PdV þ Ydy þ �imidni ð11-6Þ

dG ¼ �SdT þ VdP þ Ydy þ �imidni ð11-7Þ

These are the common thermodynamic potential functions. There are

other potential functions that can be generated by Legendre transformations:

for example, the function K ¼ KðS;V;Y; niÞ and the function

J ¼ JðT;V;Y; niÞ. Obviously, using Eq. 11-4

K ¼ E � yðqE=qyÞS;V; ni

¼ TS � PV þ �imini ð11-8Þ

J ¼ E � SðqE=qSÞV;y; ni
� yðqE=qyÞS;V; ni

¼ �PV þ �imini ð11-9Þ
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EXERCISES

1. Show that dK ¼ TdS � PdV � ydY þ �imidni.

2. Show that dJ ¼ �SdT � PdV � ydY þ �imidni.

Note: If we omit the P-V terms, the K and J functions resemble the enthalpy (H) and

the Gibbs free energy (G), except that VdP is replaced by �ydY. These functions

are sometimes called elastomer enthalpy and free energy and are even denoted as H

and G, respectively, which can be confusing because these symbols are reserved for

different Legendre transformations. Such difficulties do not arise with E and A, and

we may regard these functions as generalizations of the previously defined potential

functions E and A. In the following we will only use E and A potentials.

11.2 P-V, rAA, AND fL WORK

We take n to be fixed. Using dE ¼ TdS þ Xdx and dA ¼ �SdT þ Xdx, we

obtain the general relations

ðqE=qSÞx ¼ T

ðqE=qxÞS ¼ X ð11-10Þ

ðqA=qTÞx ¼ �S

ðqA=qxÞT ¼ X ð11-11Þ

the Maxwell relation (from dA)

�ðqS=qxÞT ¼ ðqX=qTÞx ð11-12Þ

and the Thermodynamic Equation of State

ðqE=qxÞT ¼ TðqS=qxÞT þ X

¼ X � TðqX=qTÞx ð11-13Þ

We adapt these relations to the various types of works. The results are sum-

marized in Table 11.1.

These relationships are sufficient to enable us to solve simple problems

associated with these types of works. However, to apply them, we must

know the equations of state of the substances. The simplest forms, the
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‘‘ideal’’ equations of state, are summarized below for the three-dimensional

(3-D), two-dimensional (2-D), and one-dimensional (1-D) cases.

3-D: P-V work : PV ¼ RT ð11-14Þ
2-D: swork : s ¼ s0ð1 � T=TcÞn;s0 ¼ constant and Tc is critical

temperature; T=Tc < 1; n is constant � 11=9 ð11-15Þ
1-D: fL work : f ¼ TfðLÞ;fðLÞis a monotonically increasing

function of L ð11-16Þ

EXERCISES

1. If a piece of rubber is stretched suddenly (i.e., adiabatically), will it cool,

heat up, or stay the same?

SOLUTION

Adiabatically means constant S. Thus,

ðqT=qLÞS ¼ �ðqS=qLÞT=ðqS=qTÞL

¼ ðqf=qTÞLT=CL ¼ ðT=CLÞfðLÞ > 0 ð11-17Þ

Thus the rubber heats up.

2. If a liquid surface is increased adiabatically, will it heat up, cool, or stay

the same?

TABLE 11.1 Fundamental Thermodynamic Relations in the Treatment of
Pressure-Volume (P-V) Work, Surface Enlargement (rAA) Work, and Rubber
Stretching Work (fL)

Xdx $ �PdV Xdx $ sdA Xdx $ f dL

ðqE=qVÞS ¼ �P ðqE=qAÞS ¼ s ðqE=qLÞS ¼ f

ðqS=qVÞT ¼ ðqP=qTÞV ðqS=qAÞT ¼ �ðqs=qTÞA ðqS=qLÞT ¼ �ðqf=qTÞL

ðqE=qVÞT ¼ TðqP=qTÞV � P ðqE=qAÞT ¼ s� Tðqs=qTÞA ðqE=qLÞT ¼ f � Tðqf=qTÞL
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SOLUTION

ðqT=qAÞS ¼ �ðqS=qAÞT=ðqS=qTÞA
¼ ðT=CAÞðqs=qTÞA
¼ ðT=CAÞns0ð1 � T=TcÞn�1ð�1=TÞ < 0 ð11-18Þ

The surface cools.
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CHAPTER 12

PHASE TRANSITIONS
AND CRITICAL PHENOMENA

Coexistence of two phases requires that, for ‘‘normal’’ systems, the tempera-

ture, pressure, and chemical potential of species i, mi ¼ ðqG=qniÞT;P; nj6¼i
,

have the same values in both phases. No such restrictions are placed on

ðqG=qPÞT; ni
¼ V, ðqG=qTÞP; ni

¼ �S, or ½qG=TÞ=qð1=TÞ�P; ni
¼ H.

These first derivatives of the free energy are often discontinuous at the

transition of the two phases (i.e., they have different values). Ehrenfest

called such transitions first order. If these derivatives are continuous,

but their derivatives are discontinuous (that is, if ðq2G=qP2ÞT; ni
¼ k,

ðq2G=qT2ÞP; ni
¼ CP=T, etc. are discontinuous), Ehrenfest called the transi-

tion second order. The underlying assumption in the classification of these

transitions is that there would be a jump in the second-order derivatives

between the phases, similar to the jump in the first-order derivatives. But in

many substances (perhaps most), the difference between k and CP in the two

phases is not finite but infinite, resembling a l-transition. Figure 12.1 show

plots of G vs. P and T and the variations of its derivatives V and S in a

first-order transition.

Examples of first-order transitions are solid-liquid, liquid-vapor, and allo-

tropic transitions. Examples of second-order transitions are transitions in

b-brass (copper-zinc alloy) and NH4 salts.
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Before we discuss phase transitions, we need to revisit the requirements

for stability of the thermodynamic potentials. Focusing on systems in which

T, P, and mi are uniform throughout ‘‘normal’’ systems, the first derivatives

of the thermodynamic potentials with respect to the extensive variables are

zero and the second derivatives are positive except at the critical point,

where they are zero. The second derivatives of the potential functions

with respect to the intensive variables (Section 7.10) are negative. The

results, as noted before, are often summarized by stating that these deriva-

tives are convex functions of the extensive variables, and concave functions

of the intensive variables.

12.1 STABLE, METASTABLE, AND
UNSTABLE ISOTHERMS

It is instructive to examine the behavior of the van der Waals equation of

state, even though (and perhaps because) the isotherms do not satisfy the

stability conditions over the entire range. A typical isotherm of a one-

component system is shown in Figure 12.2. We already know that, below the

critical point, ðqP=qVÞT has to be negative for stable equilibrium. Thus,

the portion BCD is never realized. If the volume starting at G is decreased,

the pressure increases to PF. Further decrease in volume causes the system to

split into two phases. The pressure and chemical potentials remain constant

until the volume VE is reached. Thereafter, the system reverts to a one-phase

system, and the pressure and chemical potentials increase with further

decreases in volume.

The segments EB and DF can be reached on rare occasions. They do not

violate the stability rules but represent metastable states (DF—a super-

saturated vapor, and EB—an overexpanded liquid). Such states may exist

for a short time but if disturbed will quickly convert to the two-state system

because there the chemical potential is lower.

V(1) V(1)

V(2)

V(2) S(2)

S(1)

P0 T0
T0P0

G G V S

P T

(b)

T

(d)(a)

P

(c)

Figure 12.1 Plots of G vs.P, G vs T, V vs. P and S vs. T.
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Note that, because the chemical potential of the vapor and liquid must

be equal in the coexistence region, i.e., mG ¼ mL, the areas I and II in

Figure 12.2a, must be equal. To prove this, note that dm ¼ �S dT þ V dP

and thus, at constant T, the integral from F to E must be zero. Accordingly

0 ¼
ðD

F

VdP þ
ðC

D

VdP þ
ðB

C

VdP þ
ðE

B

VdP ð12-1aÞ

¼
ðD

F

VdP �
ðD

C

VdP

� �

I

�
ðC

B

VdP �
ðE

B

VdP

� �

II

ð12-1bÞ

The quantities within each set of parentheses in Eq. 12-1b represent the

values of the areas II and I of Figure 12.2a, respectively, proving that area

I ¼ area II.

P

E
C

D

B

I

II

V

F

Figure 12.2a Schematic diagram of a plot of P vs. V for a van der Waals system.

B

E
A

V

C

D

F

Figure 12.2b Plot of the Helmholtz free energy, A, vs. V, corresponding to Figure 12.2a.
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Figure 12.2b shows the variation of the Helmholtz free energy A with

respect to V. corresponding to the van der Waals function of Figure 12.2a.

The function A has two minima, one at E and one at F, with common tan-

gents (the same pressure) since ðqA=qVÞT ¼ �P. The points E and F repre-

sent stable equilibrium. The segments EB and DF represent metastable

isotherms, corresponding to supercooled liquid and superheated vapor,

respectively. (They are locally but not globally stable.) The points on the

dashed line, which correspond to phase separation, have lower A values.

The segment BCD is unstable, and a system represented by these points

does not exist, at least not for a long time. A system characterized by,

say, point C will split into two phases and move to a point on the dashed

line, where the free energy is lower.

Similar considerations apply to other thermodynamic potentials. The

Gibbs free energy is particularly useful in discussing first-order transitions,

since for a one-component system G is proportional to the chemical

potential and must have the same value when the two phases coexist.

Although the foregoing discussion was based on the van der Waals

system (which is not real), many of its conclusions are applicable to real

systems. For example, we know that for any real one-component system,

points to the right of the liquid-vapor coexistence curve on a P-T diagram

(Figure 12.3) represent pure vapor; to the left of the coexistence line they

represent pure liquid. On the coexistence line, a point represents two phases,

a liquid phase and a vapor phase, each displaying a minimum on an A vs. V

plot (see Fig. 12.4). The dashed curve connecting the two minima represents

Figure 12.3 First order phase diagram of a one�component system, showing the critical

point and two other points on the liquid�vapor coexistence curve.
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a continuous, but unstable, fluid. Obviously, such a line must go through a

maximum, through a hump.

It is easier to visualize coexisting minima in plots of m vs. V rather than A

vs. V because here the minima are the same level. In a one-component sys-

tem, m is just the Gibbs free energy per mole, and the chemical potential at

each minimum (having the same pressure and the same temperature) can be

obtained from the relation m ¼ A � VðqA=qVÞT ¼ A þ PV. Obviously, the

two coexistence chemical potentials must be equal. At the hump, the chemi-

cal potential is larger than the coexistence chemical potentials.

Let X be a point on the liquid-vapor coexistence curve of a P-T phase

diagram. The corresponding point on a m-V diagram will show two minima,

one at the liquid volume position and on at the gaseous volume position at

that temperature and pressure. (Curve 1 in Figure 12.5 is a schematic repre-

sentation of m vs. V of point 1 on the P-T diagram in Figure 12.3.) It may

be inferred that, when X represents a point to the right of the coexistence

curve in Fig. 12.3, there will be only one minimum (the one on the right

in Fig. 12.5) and this minimum will be lower than the coexistence minima.

When X represents a point to the left of the coexistence curve, the left mini-

mum will be the only minimum and lower than the coexistence minima. Let

us imagine that X lies on the left of the coexistence curve and due to fluc-

tuations makes a jump, as a one-phase system, to a higher volume and winds

up at the hump. The chemical potential is now higher than at the coexistent

minima, and the one-phase system will immediately split into two phases.

G

L

A

V

Figure 12.4 Schematic representation of the variation of A vs. V, showing minima

corresponding to the points of Figure 12.3.
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Note: In a first-order transition, the molar Gibbs free energies of the two phases are

equal, but other molar functions, such as S or H, are discontinuous at the transition,

as shown in Figure 12.1.

Moving along the vapor-liquid coexistence curve toward the critical

point, in Fig. 12.5 the minima get shallower and at the critical point merge

into one minimum, which is fairly flat. This has a profound effect on the

thermodynamic behavior of the system in the critical region. Beyond the cri-

tical point, the minimum becomes steep (very steep) again, and the system

behaves normally as a one-phase system.

12.2 THE CRITICAL REGION	

Until about 1960, thermodynamics (i.e., macroscopic thermodynamics)

appeared logically complete, except for difficulties associated with critical

behavior. Thermodynamics predicted correctly that heat capacities, com-

pressibilities, magnetic susceptibilities, and other second-order derivatives

of the free energy diverge; however, it failed to account correctly for the

analytic form of the divergence. (Discussions of modern theories of critical

3

2

1

µ

V

Figure 12.5 Schematic representation of m vs. V, showing minima corresponding to the

points of Figure 12.3.

*For a comprehensive discussion of phase transitions and critical phenomena, see Stanley, 1971.
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behavior are beyond the scope of this book, and we shall only touch on the

salient points of the subject.)

It is common practice to describe the behavior of the susceptibilities

in the critical region by some ‘‘critical exponent,’’ such as a, b, g, etc. In

particular

CV 
 ðT � TcÞ�a ðT > TcÞ


 ðTc � TÞ�a0 ðT < TcÞ
ð12-2Þ

k 
 ðT � TcÞ�g ðT > TcÞ


 ðTc � TÞ�g0 ðTc < TÞ
ð12-3Þ

where Tc is the critical temperature. Along the coexistence curve, the

change in volume varies as

�V 
 ðTc � TÞ�b ðT < TcÞ ð12-4Þ

According to present thinking, every phase transition is characterized by

an ‘‘order parameter.’’ For example, in a liquid-vapor phase change, the

order parameter is the molar volume; in a Cu-Zn alloy (b-brass), the order

parameter is the factional difference of the occupation numbers of the atoms

in the so-called super lattices, etc. Early attempts to account for the power

law behavior (e.g., of the Landau theory); (Landau and Lifshitz, 1966) are

known as mean field theories because they use mean values of the order

parameters These theories predicted critical exponents, which differed

markedly from the experimental values. For example, the critical exponent

b, based on the Landau theory, is b ¼ 0:5, whereas the experimental value is

more like b � 0:3–0:4. Similar discrepancies are observed for the other

exponents, such as a, etc. In all cases, the predicted values based on classi-

cal thermodynamics appear to be too large.

What seems to be the problem in the treatment of critical phenomena? It

is known theoretically and experimentally (from statistical mechanics and

from scattering techniques, for example) that fluctuations are always pre-

sent. The validity of thermodynamics is predicated on the assumption that

fluctuations are unimportant, which is certainly true when the system is

macroscopic. We do not worry whether a particular thermodynamic variable

(such as E or H) has a unique value or fluctuates between several values

when the system is macroscopic. We assume and treat the thermodynamic

variables as being unique.

We have seen that, even in the near vicinity of a coexistence line, where

the two minima are very close to each other, the system will reside in the
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lowest minimum. Although a jump across the hump that separated the two

minima is possible and sometimes occurs, resulting in the formation of a

metastable state, such occurrences are rare. The situation changes when

the critical region is approached. The minima become more and more shal-

low, and fluctuations become significant. Properties such as the order para-

meter at certain microscopic regions may vary significantly from the bulk

value. The extent of these microscopic regions is referred to as correlation

length. They become very large the closer the system is to the critical point

and play an important role in modern explanations of critical behavior.

What is the upshot of all this? According to Callen 1985, the root of

the problem is that, in the critical region, thermodynamics is inapplicable

because of the large fluctuations. In macroscopic systems, we associate

only one value with each of the thermodynamic variables (such as E or

H), although, in reality, there is a distribution of values due to the fluctua-

tions. But the deviations from the average are so small that, for all practical

purposes, there is only one value—the average or most probable value.

Critical phenomena are exceptions: fluctuations are no longer negligible,

although the system as a whole is macroscopic.

The next chapters present an elementary treatment of basic statistical

mechanics. Statistical mechanics is not limited to macroscopic systems

but may be applied to systems where fluctuations are not negligible.
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PART II

INTRODUCTORY STATISTICAL
MECHANICS



CHAPTER 13

PRINCIPLES OF STATISTICAL
MECHANICS

13.1 INTRODUCTION

Statistical Mechanics (or Statistical Thermodynamics, as it is often called) is

concerned with predicting and as far as possible interpreting the macro-

scopic properties of a system in terms of the properties of its microscopic

constituents (molecules, atoms, electrons, etc).

For example, thermodynamics can interrelate all kinds of macroscopic

properties, such as energy, entropy, and so forth, and may ultimately express

these quantities in terms of the heat capacity of the material. Thermody-

namics, however, cannot predict the heat capacities: statistical mechanics

can.

There is another difference. Thermodynamics (meaning macroscopic

thermodynamics) is not applicable to small systems (�1012 molecules or

less) or, as noted in Chapter 12, to large systems in the critical region. In

both instances, failure is attributed to large fluctuations, which thermody-

namics does not take into account, whereas statistical mechanics does.

How are the microscopic and macroscopic properties related? The former

are described in terms of position, momentum, pressure, energy levels, wave

functions, and other mechanical properties. The latter are described in terms

of heat capacities, temperature, entropy, and others—that is, in terms of
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thermodynamic properties. Until about the mid-nineteenth century, the two

seemingly different disciplines were considered to be separate sciences,

with no apparent connection between them. Mechanics was associated

with names like Newton, LaGrange, and Hamilton and more recently with

Schrodinger, Heisenberg, and Dirac. Thermodynamics was associated

with names like Carnot, Clausius, Helmholtz, Gibbs, and more recently with

Carathéodory, Born, and others. Statistical mechanics is the branch of

science that interconnects these two seemingly different subjects. But statis-

tical mechanics is not a mere extension of mechanics and thermodynamics.

Statistical mechanics has its own laws (postulates) and a distinguished slate

of scientists, such as Boltzmann, Gibbs, and Einstein, who are credited with

founding the subject.

13.2 PRELIMINARY DISCUSSION—SIMPLE PROBLEM

The following simple (silly) problem is introduced to illustrate with a con-

crete example what statistical mechanics purports to do, how it does it, and

the underlying assumptions on which it is based.

Consider a system composed of three particles (1, 2, and 3) having a fixed

volume and a fixed energy, E. Each of the particles can be in any of the

particle energy levels, ei, shown in Figure 13.1. We take the total energy,

E, to be equal to 6 units.

Note: Historically, statistical mechanics was founded on classical mechanics. Particle

properties were described in terms of momenta, positions, and similar character-

istics and, although as a rule classical mechanics is simpler to use than quantum

mechanics, in the case of statistical mechanics it is the other way around. It is much

easier to picture a distribution of particles among discrete energy levels than to

describe them in terms of velocities momenta, etc. Actually, our treatment will not

be based on quantum mechanics. We will only use the language of quantum

mechanics.

In the example discussed here, we have for simplicity taken the energy

levels to be nondegenerate and equally spaced. Figure 13.2 illustrates how

ε4 = 4

ε3 = 3

ε2 = 2

ε1 = 1

Figure 13.1 Representation of a set of equally spaced energy levels.
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the particles can be distributed among the energy levels under the

constraint of total constant energy of 6 units. Although the total energy is

the same regardless of how the particles are distributed, it is reasonable to

assume that some properties of the system, other than the energy, E, will

depend on the arrangement of the particles among the energy states. These

arrangements are called microstates (or micromolecular states).

Note: It is wrong to picture the energy levels as shelves on which the particles sit.

Rather, the particles are continuously colliding, and the microstates continuously

change with time.

13.3 TIME AND ENSEMBLE AVERAGES

During the time of measurement on a single system, the system undergoes a

large number of changes from one microstate to another. The observed

macroscopic properties of the system are time averages of the properties

of the instantaneous microstates—that is, of the mechanical properties.

Time-average calculations are virtually impossible to carry out. A way to

get around this difficulty is to replace the time average of a single system

by an ensemble average of a very large collection of systems. That is,

instead of looking at one system over a period of time, one looks at a

(mental) collection of a large number of systems (all of which are replicas

of the system under consideration) at a given instance of time. Thus, in an

ensemble of systems, all systems have certain properties in common (such

as same N, V, E) but differ in their microscopic specifications; that is, they

have different microstates. The assumption that the time average may be

replaced by an ensemble average is stated as postulate:

� Postulate I: the observed property of a single system over a period of

time is the same as the average over all microstates (taken at an instant

of time).

ε4

ε3

ε2

ε1

(a) (b) (c)

Figure 13.2 Distribution of three particles among the set of energy levels of Figure 13.1,

having a total energy of 6 units.
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13.4 NUMBER OF MICROSTATES, ��D, DISTRIBUTIONS Di

For the system under consideration, we can construct 10 microstates

(Figure 13.3). We might characterize these microstates by the symbols

�1, �2, and so forth. (In quantum mechanics, the � symbols could represent

wave functions.) The microstates can be grouped into three different classes,

characterized by the particle distributions D1, D2, D3. Let �D, denote the

number of microstates belonging to distribution D1, etc. Thus, �D1
¼ 3,

�D2
¼ 6, and �D3

¼ 1.

Each of the systems constituting the ensemble made up of these micro-

states has the same N, V, and E, as noted before, but other properties may be

different, depending on the distribution. Specifically, let w1 be a property of

the systems when the system is in the distribution D1, w2 when the distribu-

tion is D2, and w3 when the distribution is D3. The ensemble average, which

we say is equal to the time average (and thus to the observed property) is

hwiensemble ¼ wobs ¼ ð3w1 þ 6w2 þ w3Þ=10 ð13-1Þ

This result is based on a number of assumptions, in addition to the time-

average postulate, assumptions that are implied but not stated. In particular

1) Equation 13-1 assumes that all microstates are equally probable.

(Attempts to prove this have been only partially successful.) This

assumption is so important that it is adopted as a fundamental

postulate of statistical mechanics.

� Postulate II: all microstates have equal a priori probability.

2) Although we refer to the microscopic entities as ‘‘particles,’’ we are

noncommittal as to the nature of the particles. They can mean

elementary particles (electrons, protons, etc.), composites of elemen-

tary particles, aggregates of molecules, or even large systems.
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Figure 13.3 Identity of the particles corresponding to the arrangements in Figure 13.2. The

symbol �Di represents the number of quantum states associated with distribution Di.
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3) In this example, the assumption was made that each particle retains its

own set of private energy level. This is generally not true—interaction

between the particles causes changes in the energy levels. Neglecting

the interactions holds for ideal gases and ideal solids but not for real

systems. In this course, we will only treat ideal systems, and the

assumption of private energy levels will be adequate. This assumption

is not a necessary requirement of statistical mechanics, and the

rigorous treatment of realistic systems is not based on it.

4) In drawing pictures of the 10 microstates, it was assumed that all

particles are distinguishable, that is, that they can be labeled. This is

true classically, but not quantum mechanically. In quantum mechanics,

identical particles (and in our example, the particles are identical) are

indistinguishable. Thus, instead of there being three different micro-

states in distribution D1, there is only one, i.e., �D1
¼ 1. Similarly,

�D2
¼ 1 and �D3

¼ 1. Moreover, quantum mechanics may prohibit

certain particles (fermions) from occupying the same energy state

(think of Pauli’s Exclusion Principle), and in such cases distributions

D1 and D3 are not allowed.

In summary, attention must be paid to the nature of the particles in decid-

ing what statistical count is appropriate.

1) If the particles are classical, i.e., distinguishable, we must use a certain

type of statistical count, namely the Maxwell-Boltzmann statistical

count.

2) If the particles are quantal, that is, indistinguishable and there are no

restrictions as to the number of particles per energy state, we have to

use the Bose-Einstein statistical count.

3) If the particles are quantal, that is, indistinguishable and restricted to

no more than one particle per state, then we must use the Fermi-Dirac

statistical count.

4) Although in this book we deal with particles, which for most part are

quantal (atoms, molecules, etc), our treatment will not be based on

explicit quantum mechanical techniques. Rather, the effects of quan-

tum theory will be taken into account by using the so-called corrected

classical Maxwell-Boltzmann statistics. This is a simple modification

of the Maxwell-Boltzmann statistics but, as will be shown, can be

applied to most molecular gases at ordinary temperatures.

5) Although pictures may be drawn to illustrate how the particles are

distributed among the energy levels and how the number of micro-

states can be counted in a given distribution, this can only be
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accomplished when the number of particles is small. If the number is

large (approaching Avogadro’s number), this would be an impossible

task. Fortunately, it need not be done. What is important, as will be

shown, is knowing the number of microstates, �D	 , belonging to the

most probable distribution. There are mathematical techniques for

obtaining such information, called Combinatory Analysis, to be taken

up in Section 13.5.

6) In our illustrative example, the distribution, D2, is more probable than

either D1 or D3. Had we used a large number of particles (instead of 3)

and a more complex manifold of energy levels, the distribution D2

would be so much more probable so that, for all practical purposes,

the other distributions may be ignored. In terms of the most probable

distribution as D*, we can write

hwi ¼ wobs ¼ ð�Dw1 þ 
 
 
 þ �D	w	 þ 
 
 
Þ=�D�Di
� w	 ð13-2Þ

7) The ensemble constructed in our example—in which all systems

have the same N, V, and E—is not unique. It is a particular ensemble,

called the microcanonical ensemble. There are other ensembles: the

canonical ensemble, in which all systems have the same N and V but

different Es; the grand canonical ensemble, in which the systems have

the same V but different Es and Ns; and still other kinds of ensembles.

Different ensembles allow different kinds of fluctuations. (For exam-

ple, in the canonical ensemble, there can be no fluctuations in N

because N is fixed, but in the grand canonical ensemble, there

are fluctuations in N.) Ensemble differences are significant when

the systems are small; in large systems, however, the fluctuations

become insignificant with the possible exception of the critical region,

and all ensembles give essentially the same results. In this course, we

use only the microcanonical ensemble.

13.5 MATHEMATICAL INTERLUDE VI:
COMBINATORY ANALYSIS

1. In how many ways can N distinguishable objects be placed in N

positions? Or in how many ways can N objects be permuted, N at a

time?

� Result: the first position can be filled by any of the N objects, the

second by N � 1, and so forth; thus

¼ PN
N ¼ ðN � 1ÞðN � 2Þ . . . 1 ¼ N! ð13-3Þ
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2. In how many ways can m objects be drawn out of N? Or in how many

ways can N objects be permuted m at a time?

� Result: the first object can be drawn in N different ways, the second

in N � 1 ways, and the mth in ðN � m þ 1Þ ways:

¼ Pm
N ¼ NðN � 1Þ . . . ðN � m þ 1Þ ð13-4aÞ

� Multiplying numerator and denominator by ðN � mÞ! ¼ ðN � mÞ
ðN � m � 1Þ . . . 1 yields

¼ Pm
N ¼ N!=ðN � mÞ! ð13-4bÞ

3. In how many ways can m objects be drawn out of N? The identity of

the m objects is immaterial. This is the same as asking, In how many

ways can N objects, taken m at a time, be combined?

Note: there is a difference between a permutation and a combination. In a

permutation, the identity and order of the objects are important; in a

combination, only the identity is important. For example, there are six

permutations of the letters A, B, and C but only one combination.

¼ Cm
N ¼ N!=½ðN � mÞ!m!� ð13-5Þ

4. In how many ways can N objects be divided into two piles, one

containing N � m objects and the other m objects? The order of the

objects in each pile is unimportant.

� Result: we need to divide the result given by Eq. 13-4b by m! to

correct for the ordering of the m objects:

¼ Pm
N ¼ N!=½ðN � mÞ!m!� ð13-6Þ

(This is the same as Eq. 13-5.)

5. In how many ways can N (distinguishable) objects be partitions into c

classes, such that there be N1 objects in class 1, N2 objects in class 2,

and so on, with the stipulation that the order within each class is

unimportant?

� Result: obviously

¼ N!
N!

N1!N2! 
 
 
Ni!

� �

ð13-7Þ

This expression is the same as the coefficient of multinomial

expansion:

ðf1 þ f2 þ 
 
 
 fcÞN ¼
X�

½N!=ðN1!N2! 
 
 
NC!Þ�fN1

1 fN2

2 
 
 
 fNi

C

�
ð13-8Þ
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6. In how many ways can one arrange N distinguishable objects among

g boxes. There are no restrictions as to the number of objects per

box.

� Result: the first object can go into any of the g boxes, so can the

second, and so forth:

¼ gN ð13-9Þ

7. In how many ways can N distinguishable objects be distributed into g

boxes ðg � NÞ with the stipulation that no box may contain more than

one object?

� Result:

¼ g!=ðg � NÞ! ð13-10Þ

8. In how many ways can N indistinguishable objects be put in g boxes

such that there would be no more than one object per box?

� Result:

¼ g!=½ðg � NÞ!N!� ð13-11Þ

9. In how many ways can N indistinguishable objects be distributed

among g boxes? There are no restrictions as to the number of objects

per box. Partition the space into g compartments. If there are g

compartments, there are g � 1 partitions. To start, treat the objects

and partitions on the same footing. In other words, permute N þ g � 1

entities. Now correct for the fact that permuting objects among

themselves gives nothing new, and permuting partitions among them-

selves does not give anything different.

� Result:

¼ ðg þ N � 1Þ!=½ðg � 1Þ!N!� ð13-12Þ

This formula was first derived by Einstein.

13.6 FUNDAMENTAL PROBLEM IN
STATISTICAL MECHANICS

We present a set of energy levels e1; e2; . . . ei. . . ; with degeneracies g1,

g2, . . . gi . . . ; and occupation numbers N1, N2, . . . Ni . . . . In how many

ways can those N particles be distributed among the set of energy levels,

with the stipulation that there be N1 particles in level 1, N2 particles in

level 2, and so forth?
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Obviously, the answer will depend on whether the particles are distin-

guishable or indistinguishable, whether there are restrictions as to how

may particles may occupy a given energy state, etc. In this book, we will

treat, in some detail, the statistical mechanics of distinguishable particles,

as noted before, and correct for the indistinguishability by a simple device.

The justification for this procedure is given below.

13.7 MAXWELL-BOLTZMANN, FERMI-DIRAC,
BOSE-EINSTEIN STATISTICS. ‘‘CORRECTED’’
MAXWELL-BOLTZMANN STATISTICS

13.7.1 Maxwell-Boltzmann Statistics

Particles are distinguishable, and there are no restrictions as to the number

of particles in any given state.

Using Combinatory Analysis Eqs. 13-7, 13-8, 13-9 gives the number of

microstates in the distribution, D.

�MB
D ¼ ½N!=ðN1!N2! 
 
 
Ni! 
 
 
Þ�gN

1 gN
2 . . . gN

i . . . ð13-13Þ

13.7.2 Fermi-Dirac Statistics

Particles are indistinguishable and restricted to no more than one particle

per state.

Using Eq. 13.11 of the Combinatory Analysis gives

�FD
D ¼ fg1!=½ðg1 � N1Þ!N1!�gfg2!=½g2 � N2Þ!N2!�g . . .

¼ �ifgi!=ðgi � NiÞ!Ni!g ð13-14Þ

13.7.3 Bose-Einstein Statistics

Particles are indistinguishable, and there are no restrictions.

Using Eq. 13-12, gives

�BE
D ¼ ½ðg1 þ N1 � 1Þ!=ðg1 � 1Þ!N1!�½ðg2 þ N2 � 1Þ!=ðg2 � 1Þ!N2!� . . .

¼ �i½ðgi þ Ni � 1Þ!=ðgi � 1Þ!Ni!� ð13-15Þ
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The different statistical counts produce thermodynamic values, which

are vastly different. Strictly speaking, all identical quantum-mechanical

particles are indistinguishable, and we ought to use only Fermi-Dirac or

Bose-Einstein statistics. For electrons, Fermi-Dirac statistics must be used;

for liquid Helium II (consisting of He4) at very low temperature, Bose-

Einstein Statistics has to be used. Fortunately, for most molecular systems

(except systems at very low temperatures), the number of degeneracies of a

quantum state far exceeds the number of particles of that state. For most

excited levels gi � Ni and as a result, the Bose-Einstein and Fermi-Dirac

� values approach a common value, the common value being The

Maxwell-Boltzmann �D divided by N!

Proof of the above statement is based on three approximations, all reason-

able, when gi � Ni. They are

1) Stirling’s Approximation

ln N! � NlnN � N ðN largeÞ ð13-16Þ

2) Logarithmic expansion, lnð1 � xÞ � �x ðx smallÞ ð13-17aÞ
3) Neglect of 1 compared with gi=Ni ð13-17bÞ

EXERCISE

1. Using these approximations show that

ln�FD
D ¼ ln�BE

D ¼ �iNi½lnðgi=NiÞ þ 1� ð13-18Þ

2. Also, show that

ln�MB
D ¼ ln N!þ �iNi½1 þ lnðgi=NiÞ� ð13-19aÞ

¼ NlnN þ �iNi lnðgi=NiÞ ð13-19bÞ

which is the same as Equation 13-18 except for the addition of ln N!.

13.7.4 ‘‘Corrected’’ Maxwell-Boltzmann Statistics

It is seen that �FD
D and �BE

D reach a common value, namely, �MB
D =N!, which

will be referred to as Corrected Maxwell-Boltzmann. Thus

�CMB
D ¼ �MB

D =N! ð13-20aÞ

or, using Eq. 13-16

ln�CMB
D ¼ �iNi lnðgi=NiÞ þ N ð13-20bÞ
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13.8 SYSTEMS OF DISTINGUISHABLE (LOCALIZED)
AND INDISTINGUISHABLE (NONLOCALIZED) PARTICLES

We mentioned in the preceding paragraph that in this course we would be

dealing exclusively with molecular systems that are quantum mechanical in

nature and therefore will use CMB statistics. Is there ever any justification

for using MB statistics? Yes—when dealing with crystalline solids.

Although the particles (atoms) in a crystalline sold are strictly indistinguish-

able, they are in fact localized at lattice points. Thus, by labeling the lattice

points, we label the particles, making them effectively distinguishable.

In summary, both the Maxwell-Boltzmann and the Corrected Maxwell-

Boltzmann Statistics will be used in this course, the former in applications

to crystalline solids and the latter in applications to gases.

13.9 MAXIMIZING ��D

Let D	 be the distribution for which �D	 or rather ln�D	 is a maximum, char-

acterized by the set of occupation numbers N	
1;N

	
2; . . .N

	
i . . . etc. Although

the Ni values are strictly speaking discrete, they are so large that we may

treat them as continuous variables and apply ordinary mathematical techni-

ques to obtain their maximum values. Furthermore, because we will be con-

cerned here with the most probable values, we will drop the 	 designation,

from here on, keeping in mind that in the future �D will describe the most

probable value. To find the maximum values of Ni, we must have

�iðq ln�D=qNiÞdNi ¼ 0 ð13-21Þ

subject to the constraints

N is constant or �i dNi ¼ 0 ð13-22Þ
E is constant or �i eidNi ¼ 0 ð13-23Þ

If there were no constraints, the solution to this problem would be trivial.

With the constraints, not all of the variables are independent. An easy way to

get around this difficulty is to use the Method of Lagrangian (or Undeter-

mined) Multipliers. Multiplying Eq. 13-22 by a and Equation 13-23 by b
and subtracting them from Equation 13-21 gives

�iðq ln�D=qNi � a� beiÞdNi ¼ 0 ð13-24Þ
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The Lagrange multipliers make all variables N1;N2; . . .Ni; . . . effectively

independent. To see this, let us regard N1 and N2 as the dependent variables

and all the other N values as independent variables. Independent means that

we can vary them any way we want to or not vary them at all. We choose not

to vary N4;N5 . . . , etc., that is, we set dN4; dN5; . . . equal to zero. Equa-

tion 13-24 then becomes,

ðq ln�D=qN1 � a� be1ÞdN1 þ ðq ln�D=qN2 � a� be2ÞdN2

þ ðq ln�D=qN3Þ � a� be3ÞdN3 ¼ 0 ð13-25Þ

We can choose a and b so as to make two terms zero, then the third term

will be zero also. Repeating this process with dN4, dN5, etc. shows that for

every arbitrary i (including subscripts i ¼ 1, i ¼ 2)

q ln�D=qNi � a� bei ¼ 0 all i ð13-26Þ

13.10 PROBABILITY OF A QUANTUM STATE:
THE PARTITION FUNCTION

13.10.1 Maxwell-Boltzmann Statistics

Using Eq. 13-19b we first write

ln�D ¼ ðN1 þ N2 þ 
 
 
Ni . . .Þ lnðN1 þ N2 þ 
 
 
Ni þ 
 
 
Þ
þ ðN1 ln g1 þ N2 ln g2 þ 
 
 
Ni ln gi þ 
 
 
Þ
� ðN1 ln N1 þ N2 ln N2 þ 
 
 
Ni ln Ni þ 
 
 
Þ ð13-27Þ

We differentiate with respect to Ni, which we regard here as particular vari-

able, holding constant all other variables. This gives

q ln�MB
D =qNi ¼ ln N þ N=N þ ln gi � ln Ni � Ni=Ni

¼ lnðNgi=NiÞ ¼ aþ bei ð13-28Þ

or the probability, Pi, that the particle is in state i

Pi ¼ Ni=N ¼ gie
�ae�bei ð13-29Þ

It is easy to eliminate e�a, since

�iNi=N ¼ 1 ¼ e�a�igie
�bei ð13-30Þ
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or,

e�a ¼ 1=ð�igie
�beiÞ ð13-31Þ

and so,

Pi ¼ Ni=N ¼ gie
�bei=�igie

�bei ð13-32Þ

The quantity in the denominator, denoted as q,

q ¼ �igie
�bei ð13-33Þ

is called the partition function. The partition function plays an important

role in statistical mechanics (as we shall see): all thermodynamic properties

can be derived from it.

13.10.2 Corrected Maxwell-Boltzmann Statistics

ln�CMB
D ¼ �iNiðln gi � ln Ni þ 1Þ ð13-34Þ

q ln�CMB
D =qNi ¼ ln gi � ln Ni � Ni=Ni þ 1 ¼ aþ bei ð13-35Þ

lnðgi=NiÞ ¼ aþ bei ð13-36Þ

and the probability, Pi, is

Pi ¼ Ni=N ¼ ðgie
�ae�beiÞ=N ð13-37Þ

Using �iPi ¼ 1, gives

e�a ¼ N=ð�igie
�beiÞ ð13-38Þ

Finally,

Pi ¼ Ni=N ¼ gie
�bei= �igie

�bei
� �

ð13-39Þ

It is curious that the probability of a state, Pi, is the same for the Maxwell-

Boltzmann as for the Corrected Maxwell-Boltzmann expression. This is also

true for some other properties, such as the energy (as will be shown shortly),

but not all properties. The entropies, for example, differ.
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The average value of a given property, w (including the average energy, e),

is for both types of statistics.

hwi ¼ �iwiPi ¼ �iwigie
�bei=�igie

�bei ð13-40Þ

Also, the ratio of the population in state j to state i, is, regardless of statistics

Nj=Ni ¼ ðgj=giÞe�bðe1�eiÞ ð13-41Þ
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CHAPTER 14

THERMODYNAMIC CONNECTION

14.1 ENERGY, HEAT, AND WORK

The total energy for either localized and delocalized particles (solids, and

gases) is, using Eq. 13-32 or Eq. 13-39,

E ¼ �iNiei ¼ Nð�iei e�bei=�igi e�beiÞ ð14-1Þ

¼ Nð�ieigie
�bei=qÞ ð14-2Þ

It follows immediately, that Eq. 14-2 can be written

E ¼ �Nðq ln q=qbÞV ð14-3Þ

The subscript, V, is introduced because the differentiation of lnq is under

conditions of constant ei. Constant volume (particle-in-a box!) ensures that

the energy levels will remain constant.

Note: The quantity within parentheses in Eqs. 14-2 and 14-3 represent also the

average particle energy, and the equations may also be written as

E ¼ Nhei ð14-4Þ
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Let us now consider heat and work. Let us change the system from a state

whose energy is E to a neighboring state whose energy is E0. If E and E0

differ infinitesimally, we may write for a closed system (N fixed)

dE ¼ �iei dNi þ �iNi dei ð14-5Þ
Thus, there are two ways to change the energy: (1) by changing the

energy levels and (2) by reshuffling the particles among the energy levels.

Changing the energy levels requires changing the volume, and it makes

sense to associate this process with work. The particle reshuffling term

must then be associated with heat. In short, we define the elements of

heat and of work as

dq ¼ �iei dNi ð14-6Þ
dw ¼ �i Ni dei ð14-7Þ

14.2 ENTROPY

In our discussion of thermodynamics, we frequently made use of the notion

that, if a system is isolated, its entropy is a maximum. An isolated system

does not exchange energy or matter with the surroundings; therefore, if a

system has constant energy, constant volume, and constant N, it is an iso-

lated system. In statistical mechanics, we noticed that under such constraints

the number of microstates tends to a maximum. This strongly suggests that

there ought to be a connection between the entropy and the number of

microstates, � or thermodynamic probability, as it is sometimes referred

to. But there is a problem! Entropy is additive: the entropy of two systems

1 and 2 is S ¼ S1 þ S2, but the number of microstates of two combined sys-

tems is multiplicative, that is, �¼�1 	�2. On the other hand, the log of

�1 	�2 is additive. This led Boltzmann to suggest the following (which

we will take as a postulate):


 Postulate III: the entropy of a system is S ¼ k ln �.

Here, k represents the ‘‘Boltzmann constant’’ (i.e., k ¼ 1.38066 	 10�23J/K)

and � refers to the number of microstates, consistent with the macroscopic

constraints of constant E, N, and V.

Note: Strictly speaking, the above postulate should include all microstates, that is,

�D �D, but, as noted before, in the thermodynamic limit, only the most probable

distribution will effectively count, and thus we will have the basic definition, S ¼ k

ln �D� .
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14.2.1 Entropy of Nonlocalized Systems (Gases)

Using Eq. 13-34, we obtain

S ¼ k ln�CMB
D ¼ k ln�iNi½lnðgi=NiÞ þ 1 ð14-8Þ

Replacing gi=Ni by ebei q/N (which follows from Eq. 13-39, we get

S ¼ k�i Ni½ln ðq=NÞ þ bei þ 1 ð14-9Þ
¼ k½N lnðq=NÞ þ b�iNiei þ N ð14-10Þ

or

S ¼ kðN ln q þ bE � N ln N þ NÞ ð14-11Þ

14.2.2 Entropy of Localized Systems (Crystalline Solids)

Using Eq. 13-19b gives for localized systems

S ¼ k ln�MB
D ¼ k N ln N þ k�iNi lnðgi=NiÞ ð14-12Þ

Using again Eq. 13-39 or Eq. 13-33 to replace gi=Ni yields

S ¼ k½N ln N þ �iNiðlnðq=NÞ þ beÞ ð14-13Þ
¼ kðN ln N þ N ln q � N ln N þ b�i NieiÞ ð14-14Þ
¼ kðN ln q þ bEÞ ð14-15Þ

14.3 IDENTIFICATION OF b WITH 1/KT

In thermodynamics, heat and entropy are connected by the relation, dS ¼
(1/T) dqrev. We have already identified the statistical-mechanical element

of heat, namely, dq ¼�i ei dNi. Let us now seek to identify dS. Although

the entropies for localized and delocalized systems differ, the difference is

in N, which for a closed system is constant. Thus, we can treat both entropy

forms simultaneously by defining

S ¼ kðN ln q þ bE þ constantÞ
¼ kðN ln�i gi e�bei þ bE þ constantÞ ð14-16Þ
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For fixed N, S is a function of b, V and thus e1; e2; . . . ; ei; . . . . Let us differ-

entiate S with respect to b and ei:

dS ¼ ðqS=qbÞei
dbþ �iðqS=qeiÞb;e; j 6¼i

dei

¼ k½ð�N�ieigie
�bei=�i gie

�beiÞdb� N bð�igie
�bei=�igie

�beiÞdei

þ Edbþ bdE ð14-17Þ

The first term within brackets of Eq. 14-17 is �Nheidb ¼ �E db and can-

cels the third term. The second term of Eq. 14-17 is (using Eq. 13-39)

�b�iNidei ¼ �bdw. Therefore,

dS ¼ kbðdE � dwÞ ¼ kbdqrev ð14-18Þ

Here dq refers to an element of heat and not to the partition function. The

differential dS is an exact differential, since it was obtained by differentiat-

ing Sðb; eiÞ with respect b and ei, and so dq must be reversible, as indicated.

Obviously, kb must be the inverse temperature, i.e., kb¼ 1/T or

b ¼ 1=kT ð14-19Þ

14.4 PRESSURE

From dw ¼�i Ni dei, we obtain on replacing Ni (Eq. 13-39)

P ¼ �qw=qV ¼ ��iNiqei=qV ð14-20Þ

¼ �N�iðqei=qVÞ gi e�bei=�igie
�bei ð14-21Þ

Note that the derivative of the logarithm of the partition function, q, is

q ln q=qV ¼ �i½�bðqei=qVÞgiðe�bei=�igie
�beiÞ ð14-22Þ

Consequently,

P ¼ ðN=bÞðq ln q=qVÞ ¼ NkTðq ln q=qVÞT ð14-23Þ
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APPLICATION

It will be shown later that the translational partition function of system of

independent particles (ideal gases), is

qtr ¼ ð2pmkT=h
2Þ3=2

V ð14-24Þ

Applying Eq. 14-23 shows that

P ¼ NkT q=qV ½lnð2pmkT=h
2Þ3=2 þ ln V

¼ NkT=V
ð14-25Þ

14.5 THE FUNCTIONS E, H, S, A, G, AND l

From the expressions of E and S in terms of the partition functions and the

standard thermodynamic relations, we can construct all thermodynamic

potentials.

1. Energy

E ¼ kNT2ðq ln q=qTÞV ð14-26Þ

This expression is valid for both the localized and delocalized systems.

2. Enthalpy

H ¼ E þ PV

¼ kNT2ðq ln q=qTÞV þ kNTðq ln q=qVÞTV ð14-27Þ

For an ideal gas, the second term is kNT. For an ideal solid (a solid

composed of localized but non-interacting particles), the partition

function is independent of volume, and the second term is zero.

3. Entropy

— for nonlocalized systems

S ¼ kN½lnðq=NÞ þ 1 þ kNTðq ln q=qTÞV ð14-28Þ

— for localized systems

S ¼ kN ln q þ kNTðqq=qTÞV ð14-29Þ
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4. Helmholtz Free Energy, A ¼ E � TS

— for nonlocalized systems

A ¼ kNT2ðq ln q=qTÞV � kNT2ðq ln q=qTÞV

� kNT½lnðq=NÞ þ 1 ð14-30Þ

¼ �kNT lnðq=NÞ � kNT ðfor ideal gasÞ ð14-31Þ

— for localized sytems

A ¼ kNT2ðq ln q=qTÞV � kNT ln q � kNT2ðq ln q=qTÞV ð14-32Þ
¼ �kNT ln qðfor ideal solidÞ ð14-33Þ

5. Gibbs Free Energy, G ¼ A þ PV

— for nonlocalized systems

G ¼ �kNT lnðq=NÞ � kNT þ kNTðq ln q=qVÞTV ð14-34Þ

¼ �kNT lnðq=NÞ ðfor an ideal gasÞ ð14-35Þ

— for localized systems

G ¼ �kTN ln q þ kNTðq ln q=qVÞTV ð14-36Þ
¼ �kTN ln q ðfor ideal solidÞ ð14-37Þ

6. Chemical Potential, m ¼ G=N

In statistical mechanics, unlike thermodynamics, it is customary to

define the chemical potential as the free energy per molecule, not per

mole. Thus, the symbol m, used in this part of the course outlined in this

book, represent the free energy per molecule.

— for nonlocalized systems,

m ¼ �kT lnðq=NÞ � kT þ ðkTðq ln q=qVÞTÞV ð14-38Þ
¼ �kT lnðq=NÞ ðfor ideal gasÞ ð14-39Þ

— for localized systems

m ¼ �kT ln q þ ½kTðq ln q=qVÞTV ð14-40Þ
¼ �kT ln q ðfor an ideal solidÞ ð14-41Þ
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Note: Solids, and not only ideal solids, are by and large incompressible. The variation

of ln q with V can be expected to be very small (i.e., PV is very small), and no

significant errors are made when terms in (q ln q/qV)T are ignored. Accordingly,

there is then no essential difference between E and H and between A and G in solids.

We now have formal expressions for determining all the thermodynamic

functions of gases and solids. What needs to be done next is to derive

expressions for the various kinds of partition functions that are likely to

be needed.
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CHAPTER 15

MOLECULAR PARTITION FUNCTION

To a very good approximation, the molecular energy may be separated into

translational(tr), vibrational(vib), rotational(rot), electronic(el), and even

nuclear(nuc) components.

e � etr þ evib þ erot þ eel þ ðenucÞ ð15-1Þ

Because q ¼ �igi e�bei , we can write

q � �tr gtr e�be �vib gvib e�bei �rot grot e�be �el gel e�bei

� ð�nuc gnuc e�beiÞ ð15-2Þ
� qtr qvib qrot qelðqnucÞ ð15-3Þ

Note: Although nuclear energy levels are never excited under normal terrestial

conditions (we are not talking about accelerators, cyclotrons, etc.), nuclear energy

levels can have no direct effect on the thermodynamic properties. They are included

here because, as we shall see, nuclear spins have a ‘‘veto power’’ on what rotational

energy levels are allowed and thus have a profound effect the rotational partition

function.
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15.1 TRANSLATIONAL PARTITION FUNCTION

We use the particle-in-a-box energy levels to construct the translational

partition function. The energy level of a particle in a 3-D box with sides

a, b and c is

enx;ny;nz
¼ h2=8mðn2

x=a2 þ n2
y=b2 þ n2

z=c2Þ ð15-4Þ

where nx, ny, and nz are quantum numbers that run from 1 to 1, m is the

mass, and h Planck’s constant. Accordingly

qtr ¼ �nx
expð�n2

xh2=8ma2kTÞ�ny
expð�n2

yh2=8mb2kTÞ�nz

� expð�n2
z h2=8mc2=kTÞ ð15-5aÞ

Because the spacing between the energy levels is exceedingly small

for macroscopic values of a, b, and c we may replace the summations by

integrations, i.e.

qtr ¼
ð1

0

dnx expð�n2
xh2=8makTÞ

ð1

0

dny . . . ;

ð1

0

dnz . . . ð15-5bÞ

The integrals are well known. They are of the form
Ð1

0
dx expð�ax2Þ ¼

1=2
ffiffiffiffiffiffiffiffiffiffiffiffi
ðp=aÞ

p
and so the integration in Equation 15-5b reduces to

qtr ¼ ð2pmkT=h2Þ3=2
abc ¼ ð2pmkT=h2Þ3=2

V ð15-6Þ

Note: The translational partition function can be used only for gases. In crystalline

solids, the particles are located at lattice points and there is no translational energy.

From the translational partition function, we can immediately obtain part

of the energy associated with translational motion. For a monatomic gas, the

translational energy is the only prevailing energy, except for an occasional

contribution from the electronic partition function. Applying Equation 14-26

gives

Etr ¼ kNT2ðq ln qtr=qTÞV

¼ kNT2q=qT½ln T3=2 þ lnð2pmk=h2Þ3=2
V
 ð15-7Þ

¼ ð3=2Þ kNT ð15-8Þ

The heat capacity is obviously,

CV;tr ¼ ðqE=qTÞV ð15-9Þ
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15.2 VIBRATIONAL PARTITION FUNCTION: DIATOMICS

We use the harmonic oscillator as a model for vibrational motion. The

energy levels are

evib
v ¼ ðv þ 1=2Þhn0 v ¼ 0; 1; 2; . . . ð15-10Þ

where n0 is the vibrational frequency of the molecule and ð1=2Þ hn0 is the

zero-point energy.

qvib ¼
X1

v¼0

e�ðvþ1=2Þhn0=kT ¼ e�ð1=2Þhn0=kT
X1

0

e�vhn0=kT ð15-11aÞ

¼ e�ð1=2Þ hn0=kTð1 þ e�hn0=kT þ e�2hn0=kT þ � � �Þ ð15-11bÞ
¼ e�ð1=2Þhn0=kT=ð1 � e�hn0=kTÞ ð15-11cÞ

It is customary to define a ‘‘characteristic vibrational temperature,’’ yvhn0=k,

and thus write

qvib ¼ e�ð1=2Þyv=T=ð1 � e�yv=TÞ ð15-12Þ

For most diatomic molecules yv > 300 K (I2 and to lesser extent Br2 are

exceptions), and so qvib � 1 and thus makes no contribution to the thermo-

dynamic properties at ordinary temperatures.

Note: The spacing between vibrational energy levels in diatomic molecules is

generally large and the partition function cannot be approximated by the classical

limit, which means replacing the summation by integration. If this were permitted

the result would be

qvib;class ¼
ð1

0

dve�vhn0=kT ¼ kT=hn0 ¼ T=yv: ð15-13Þ

Classically, there is no zero-point energy.

15.3 ROTATIONAL PARTITION FUNCTION: DIATOMICS

The rotational energy of a diatomic molecule is

eJ ¼ JðJ þ 1Þðh2=8p2IÞ J ¼ 0; 1; . . . ;1 ð15-14Þ
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where J is the rotational quantum number; I is the moment of inertia, i.e.,

I ¼ md2, in which m is the reduced mass ð1=m ¼ 1=m1 þ 1=m2Þ; and d is the

distance between the centers of the atoms in the molecule. (The moment of

inertia can be obtained spectroscopically from the rotational constant

B ¼ h2=8p2Ic, where c is the speed of light.)

The rotational energy levels are degenerate, gJ ¼ 2J þ 1. Accordingly

qrot ¼ �Jð2J þ 1Þ exp½�JðJ þ 1Þðh2=8p2IkTÞ
 ð15-15Þ

In analogy to the vibrational temperature, it is convenient to define a

‘‘characteristic rotational temperature,’’ yr ¼ h2=8p2Ik, and so

qrot ¼ �Jð2J þ 1Þ exp½�ðJ2 þ JÞyr=T
 ð15-16aÞ

In general, the quantity yr=T is small. (For example, for H2 yr ¼ 85:4 K;

for O2 it is 2.07 K.) This allows the summation to be replaced by an

integration

qrot ¼
ð1

0

dJð2J þ 1Þ exp½�ðJ2 þ JÞyr=T
 ð15-16bÞ

If we let y ¼ J2 þ J, then dy ¼ ð2J þ 1ÞdJ and so

qrot ¼
ð1

0

dye�yyr=T ¼ T=yr ð15-17Þ

This expression is valid for heteronuclear diatomic molecules. For homo-

nuclear diatomic molecules, the expression has to be divided by 2. (The rea-

son for this has to do with nuclear spin degeneracy, to be discussed later.) By

defining a ‘‘symmetry’’ number s, which has the significance that s ¼ 1

when the molecule is heteronuclear and s ¼ 2 when the molecule is homo-

nuclear, we can write a general formula

qrot ¼ T=syr ð15-18Þ

The rotational energy is

E ¼ kNT2q=qT½ln T � lnðsyrÞ
 ¼ kNT ð15-19Þ

or E ¼ RT per mole, which is the same for nonlocalized and localized sys-

tems. The entropies are different because of the presence of s.
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15.4 ELECTRONIC PARTITION FUNCTION

As a rule, only the ground electronic state needs to be considered, since the

excited states are so much higher that, with few exceptions, the probability

that they will be populated at normal temperatures is essentially nil. If we

take the ground state energy to be zero, i.e., eel;0 ¼ 0

qel ¼ gel;0 þ gel;1e�be1 þ � � � ffi gel;0 ð15-20Þ

The ground state degeneracies can be determined from the term symbols

(e.g., 1S0, 3P2, 1�g, 2�3=2, etc.) We will give the degeneracies for purposes

of this book. It is noteworthy that for most molecules gel;0 ¼ 1 (O2 is a nota-

ble exception; the term symbol is 3�g and the degeneracy is gel;0 ¼ 3).

Obviously, electronic degeneracies have no effect on the energy, but they

may affect the entropy because they are not always unity.

15.5 NUCLEAR SPIN STATES

Nuclear energy levels are million electron volts (MEV) apart and, as noted

before, never need be considered in statistical problems at terrestrial tem-

peratures. Nuclei have nuclear degeneracies; however, in chemical transfor-

mations, the nuclei do not change, and nuclear degeneracies can be ignored

(in contrast to electronic degeneracies). Nonetheless, nuclear spin states

play a decisive role in the sense that they exert a ‘‘veto power’’ over the

kind of rotational energy levels that are permitted in homonuclear mole-

cules. Specifically, nuclear spins (denoted as I) can combine to give rise

to symmetric spin states (called ortho) and to antisymmetric spin states

(called para). (If the nuclear spin is I, there are (I þ 1)(2I þ 1) ortho states

and I(2I þ 1) para states.)

In homonuclear diatomic molecules, the following rules apply:

1) If the nuclear mass number (number of neutrons and protons) of each

nucleus is even, then odd rotational states (J ¼ 1; 3; etc.) must

combine with para spin states and even rotational states (J ¼ 0; 2;
etc.) must combine with ortho spin states.

2) If the nuclear mass number (number of neutrons and protons) of each

nucleus is odd, then even rotational states (J ¼ 0; 2; etc.) must

combine with para spin states and odd rotational states (J ¼ 1; 3;
etc.) must combine with ortho spin states.
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The net result is that, in homonuclear diatomic molecules (except for H2

and D2 at low temperatures), roughly half of the rotational energy levels is

eliminated from the summation in the nuclear partition function, yielding

qrot ¼ T=2yrotÞ. Nuclear spin states have no effect on the rotational states

of heteronuclear diatomics.

15.6 THE ‘‘ZERO’’ OF ENERGY

From the standpoint of formal theory, it is unimportant to know what the

precise values of the energy levels are. In many instances, one takes the low-

est energy level to be zero. But there cases (for example, chemical reactions)

in which it is imperative that the states of all molecular species be measured

from a common reference state, which is taken to be the ‘‘zero of energy.’’

Let the set ð0; e1; e2; . . .Þ represent energy levels in which the lowest level

is taken to zero and the set ð0; e01; e02; . . .Þ represents energy levels that are

measured from an arbitrary reference energy (not necessarily the lowest

energy level) of the molecule (see Figure 15.1). It should be noted that

the reference state (zero of energy) does not have to lie below the nonprimed

set but can be anywhere. Defining the partition functions based on the

primed set energy levels as q0 and the partition function based on the non-

primed set as q, we get

q0 ¼ �igie
�be0 ð15-21Þ

q ¼ �igie
�be ð15-22Þ

primed and non-primed sets as

ε0

ε1

ε2

ε3

ε4

ε′1

ε′2

ε′3

ε′4

Figure 15.1 Schematic representation of the zero of energy. The primed states are

measured from an arbitrary reference state (the zero of energy is indicated by the dashed

line). The unprimed states are measured from the lowest molecular state, which lies e00

above the zero of energy.
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and noticing that

e0i ¼ ei þ e0 ð15-23Þ

gives

q0 ¼ e�be0�igi expð�beiÞ ð15-24Þ
q0 ¼ qe�be0 ð15-25Þ

Accordingly,

E0 ¼ �N q=qb ln q0 ¼ �Nq ln q=qbþ Ne0

¼ kNT2ðq ln q=qTÞV þ E0 ð15-26Þ

where E0 ¼ Ne0 and is constant. Thus, the energy can still be expressed in

terms of the ordinary q provided it is denoted by E0 � E0. Rather than using

E0 to represent the energy, it is customary to use the standard notation E but

replace it by E � E0. Thus,

E � E0 ¼ kNT2ðq ln q=qTÞV ð15-27Þ

What effect, if any, does zero of energy have on the entropy? Using again

Eqs. 14-10 and 14-13 we obtain for

1) Nonlocalized systems:

S ¼ k�iNi½lnðq0=NÞ þ 1 þ be0i
 ð15-28Þ

¼ k�iNifln½ðq=NÞe�be0
i 
 þ 1 þ bðei þ e0Þg ð15-29Þ

¼ k�iNi½lnðq=NÞ þ 1 þ bei
 ð15-30Þ

¼ kN½lnðq=NÞ þ 1 þ Tðq ln q=qTÞV
 ð15-31Þ

2) Localized systems

S ¼ kN ln N þ k�iNi½lnðq=NÞe�be0
i 
 þ bðei þ e0Þ ð15-32Þ

¼ kN ln N þ kN ln q=N þ �iNiei ð15-33Þ

¼ kN½ln q þ Tðq ln q=qTÞV
 ð15-34Þ
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Comparing Equations 15-31 with 14-28 and Equations 15-34 wtih 14-29

shows that they are identical. Thus, the zero of energy has no effect on

the entropy of either localized or delocalized system.

In summary, because the thermodynamic potentials are combinations of S

and/or PV, the thermodynamic functions labeled E, H, A, and G in Section

14-5 ought to be replaced by E � E0, H � E0, A � E0, G � E0. The chemi-

cal potential should be written (because it represents the free energy per

molecule) as m� e0. The expressions for the entropy remain unchanged.
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CHAPTER 16

STATISTICAL MECHANICAL
APPLICATIONS

As an illustration of the use of statistical mechanics, four types of applica-

tions will be considered here: three having to do with delocalized systems

(gases) and one with a localized system (crystalline solids). The simplest

applications are calculations of population ratios, thermodynamic functions,

equilibrium constants, and heat capacity of solids.

16.1 POPULATION RATIOS

EXERCISE

The vibrational and rotational characteristic temperatures of O2 are, respec-

tively, yv ¼ 2228 K and yr ¼ 2:050 K. The ground state electronic degen-

eracy is gel ¼ 3. Calculate the rotational population ratio of O2 in the state

J ¼ 5 to J ¼ 2 at T ¼ 300 K.

Thermodynamics and Introductory Statistical Mechanics, by Bruno Linder
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SOLUTION

N5=N2 ¼ ð2 � 5 þ 1Þ=ð2 � 2 þ 1Þ exp½ð�5 � 6 þ 2 � 3Þ

� 2:050=300� ð16-1Þ

¼ 2:2 � 0:8487 ¼ 1:86714 ð16-2Þ

Incidentally, the rotational probability distribution, PJ, goes through a max-

imum. It is easy to determine the maximum J vale. In general, we require

that

dPJ=dJ ¼ 0 ð16-3Þ

which gives

ð2=qrotÞ exp�½ðJ2 þ JÞyr=T��ð1=qrotÞð2J þ 1Þ2ðyr=TÞ exp�½ðJ2 þ JÞyr=T�¼0

ð16-4Þ

or

2 � ð2 J þ 1Þ2yr=T ¼ 0 ð16-5Þ

Thus,

Jmax ¼ ð1=2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2T=yrÞ

p
� 1

h i
ð16-6Þ

For O2, Jmax ¼ ð1=2Þ½ð2 � 300=2:050Þ1=2 � 1� ¼ 8:05 at 300 K and thus the

maximum J is around 8.

16.2 THERMODYNAMIC FUNCTIONS OF GASES

EXERCISE

Calculate S and E of 1 mol of O2 at T ¼ 298:15 K and 1 atm using the data

of the example given above.

THERMODYNAMIC FUNCTIONS OF GASES 159



SOLUTION

The q values are dimensionless. In cgs units (1 atm ¼ 106 dyn/cm2)

qtr ¼ ð2pmkT=h2Þ3=2
V ¼ ð2pmkT=h2Þ3=2

NkT=P ð16-7Þ
¼ f½2 � p� ð32:0=6:02 � 1023Þ � 1:38 � 10�16

� 298:15�=ð6:62 � 10�27Þ2g3=2

� 6:02 � 1023 � 1:38 � 10�16 � 298:15=106 ð16-8Þ
¼ 4:35 � 1030 ð16-9Þ

Etr ¼ kNT2 q
qT

ðln T5=2 þ ln constantÞ ð16-10Þ

¼ ð5=2ÞRT ð16-11Þ

R ¼ kN ¼ 1:38 � 10�16 erg=K molecule � 6:02 � 1023 molecules=mol ¼
8:31 � 107 erg=Kmol ¼ 8:31 J/Kmol. The translational entropy is

Str ¼ Rf½lnðqer=NÞ þ 1� þ 5=2g ð16-12Þ
¼ ð8:31 J=KmolÞf½lnð4:35 � 1030=6:02 � 1023Þ þ 1� þ 5=2g ð16-13Þ
¼ 160:32 J=Kmol ð16-14Þ

qvib ¼ e�1=2ðhn0=kTÞ=ð1 � e�hn0=kTÞ ¼ e�ð1=2Þyv=T=ð1 � e�yv=TÞ
¼ e�3:714=ð1 � e�7:43Þ ð16-15aÞ
¼ e�1=2� 2228=298:15=ð1 � e�2228=298:15Þ ð16-15bÞ
¼ 2:384 � 10�2=ð1 � 5:95 � 10�4Þ ¼ 2:384 � 10�2 ð16-15cÞ

Evib ¼ kNT2ðq ln qvib=qTÞ ¼ R½yv=2 þ yv=ðey=T � 1Þ� ð16-16Þ
¼ R½ð2228=2Þ þ 2228Þ=ðe7:43 � 1Þ� ¼ Rð1113:1 þ 1:326Þ ð16-17Þ
¼ Rð1114:4Þ ð16-18Þ

This energy is essentially the zero-point energy, confirming that higher vibra-

tional states are not activated. Such energies are often not included in Evib but

lumped together with the zero of energy E0.The vibrational entropy is

Svib ¼ R ln qvib þ Evib=T

¼ 8:31 J=Kmolðln 2:384 � 10�2 þ 1114:4=298:15Þ ð16-19Þ
¼ 8:31 J=Kmolð�3:73 þ 3:74Þ ¼ 0 ð16-20Þ

Note 1: The vibrational entropy is basically zero, which is not surprising because the

vibrational energy is essentially the zero-point energy whose contribution is

cancelled by the contribution from qvib.
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Note 2: Division of the logarithmic expression of q by N came about as a result of

making the distinguishable Maxwell-Boltzmann system applicable to the indin-

distinguishable Corrected Maxwell-Boltzmann system, applicable to delocalized

systems. Division by N should be applied only once. It is natural to apply it to the

translational entropy as in Eq. 16-12

The rotational contribution is essentially classical

qrot ¼ T=syrot ¼ 298:15=2 � 2:05 ¼ 72:71 ð16-21Þ
Erot ¼ RT ð16-22Þ
Srot ¼ R ln qrot þ Erot=T ¼ 8:31 J=Kmolðln 72:71 þ 1Þ ð16-23Þ

¼ 43:96 J=Kmol ð16-24Þ

It should be noted that the rotation entropy takes account of the symmetry

number, a reflection of the nuclear spin states.

The electronic contribution is

qel ¼ 3 ð16-25Þ
Eel ¼ 0 ð16-26Þ
Sel ¼ R ln qel ¼ 8:31 J=Kmol ln 3 ¼ 9:13 J=Kmol ð16-27Þ

Note: O2 is unusual in the sense that electronic ground state is degenerate. Virtually all

homonuclear diatomics are non-degenerate, and thus there are no contributions

made to the entropy from electronic states. The total entropy of oxygen at 300K and

1 atm. is the sum of the above entropies.

S ¼ Str þ Svib þ Srot þ Sel ð16-28Þ
¼ 213:41 J=Kmol ð16-29Þ

16.3 EQUILIBRIUM CONSTANTS

Three types of equilibrium constants will be considered:

1) KN, which expresses the equilibrium constant in terms of the ratio of

the number of molecules Ni;

2) Kc, which expresses the equilibrium constant in terms of molecular

concentrations Ni=V; and

3) KP, which expresses the equilibrium constant in terms of partial

pressures Pi ¼ kTNi=V ¼ kTci.
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In statistical mechanics, concentrations are most often expressed as num-

ber of molecules per unit volume (rather than moles per unit volume).

Recall from thermodynamics that a system is in equilibrium when

�inimi ¼ 0. Here the ni are the stoichiometric coefficients of the products

(assigned positive values) and of the reactants (assigned negative values).

Since for gases (see Eqs. 15-25 and 14-39)

mi ¼ �kT ln qi=Ni þ ei;0 ð16-30Þ
�inimi ¼ �kT�ini ln qi=Ni þ �iniei;0 ¼ 0 ð16-31Þ

Writing �iniei;0 ¼ �e0 gives

ln½�iðqi=NiÞnie��e0=kT� ¼ 0 ð16-32Þ
�iðqi=NiÞni e��e0=kT ¼ 1 ð16-33Þ

�iq
ni

i e��e0=kT ¼ �iN
ni

i ¼ KN ð16-34Þ
Kc ¼ �iðNi=VÞni ¼ �iðqi=VÞni e��e0=kT ð16-35Þ

Kp is defined in terms of the partial pressure Pi, namely,

Kp ¼ �iP
ni

i

Replacing Pi by ðNi=VÞkT yields

KP ¼ ðkTÞ�n�iðqi=VÞnie��e0=kT ð16-36Þ

In equilibrium problems involving dissociation of molecules, it is cus-

tomary to take the reference state as the state of the dissociated molecule.

Figure 16.1 shows a typical potential energy diagram of a diatomic

molecule. Depicted in the diagram are the dissociation energy D0, and the

potential well energy Dc. The symbol e0 stands for the energy difference

Pot.

Energy

ref state

εc

εo

Dc Do

} 1/2 hνo

Figure 16.1 Potential energy plot of a diatomic molecule, showing relations between the e0

and eC. DC is the energy difference between lowest molecular state and the reference state

and D0 is the dissociation energy.
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between the state v ¼ 0, and the reference state; ec is the energy difference

between the potential well and the reference state. Obviously, D0 ¼ �e0,

Dc ¼ �ec. Moreover, Dc ¼ D0 þ ð1=2Þhn0. The difference between Dc

and D0 is the zero-point energy.

Note: There are two ways to solve the equilibrium problem, by using De and the

vibrational partition function qvib, which includes contributions from the zero-

point energy (as we have done) or by using D0 and a vibrational partition function

qvib,0, which contains no contributions from the zero-point energy. The results are

identical. Because the dissociation energies are measured directly, it is best to use

D0 and qvib without the zero-point energy.

EXERCISE

Calculate the equilibrium constant KP at T ¼ 1; 000 K for the reaction

2Na Ð Na2 ð16-37Þ
The dissociation energy for Na2 is D0 ¼ 1:20 � 10�12 erg/molecule (i.e.,

17.3 kcal/mol). For Na2, yv ¼ 229 K, yr ¼ 0:221 K, and gel;0 ¼ 1. For

Na, gel;0 ¼ 2.

SOLUTION

KP ¼ 1=kTðqNa2
=VÞ=ðqNa=VÞ2 ð16-38aÞ

¼ 1=kTf½ðqNa2;tr
=VÞqrotqvibqNa2;el
=½ðqNa;tr=VÞ2

qNa;el2 
g
� e�ðe0�0�0Þ=kT ð16-38bÞ

Replacing e0 by �D0 and omitting the zero-point energy in qvib, we obtain

(in cgs units)

1=kT ¼ 1=ð1:38 � 10�16 � 1;000Þ ð16-39Þ
qNa2

=V ¼ ½2p� ð46=6:02 � 1023Þ � 1:38 � 10�16

� 1;000=ð6:63 � 10�27Þ2
3=2 � 1;000=ð2 � 0:221Þ
� 1=ð1 � e�229=1;000Þ � exp½1:20 � 10�12=ð1:38

� 10�16 � 1;000Þ
 ð16-40Þ
ðqNa=VÞ2 ¼ f½2p� ð23=6:02 � 1023Þ � 1:38 � 10�16

� 1;000=ð6:63 � 10�27Þ2
3=2 � 2g2 ð16-41Þ
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Note: The q values are dimensionless (why?), and so q/V has the dimensions of V�1

and KP has the dimensions of V/kT, which is pressure in cgs units (dyn/cm2)�1. The

result of this calculation is KP ¼ 0:50 � 10�6 (dyn/cm2)�1 or 0.50 atm�1. (The

experimental value is KP ¼ 0:475 atm�1.)

16.4 SYSTEMS OF LOCALIZED PARTICLES:
THE EINSTEIN SOLID

The Einstein model is a crystalline solid in which each atom vibrates in three

dimensions independently from one another. Einstein formulated the theory

in 1907, using the quantal expression for the vibration energy of an oscilla-

tor, namely, ev ¼ ðv þ 1=2Þhn0. This produced a heat capacity curve that

went to zero as T ! 0, in agreement with observations. Classical statistical

mechanics predicted a heat capacity that was constant over the entire range

of temperatures, including absolute zero. (The heat capacity of solids, the

photo-electric effect, and black-body radiation were three experimental

observations that defied classical explanation around the turn of the 20th

century, leading eventually to the demise of classical mechanics on the

molecular level).

Consider a crystalline solid consisting of 3N linear harmonic oscillators.

(We could equally well have picked a system composed of N three-

dimensional harmonic oscillators.) For a single harmonic oscillator, the

partition function is

q1
vib ¼ e�ð1=2Þhn0=kT=ð1 � e�hn0=kTÞ ð16-42Þ

For 3N independent harmonic oscillators

q3N
vib ¼ ½e�ð1=2ÞNhn0=kT=ð1 � e�hn0=kTÞ�3N ð16-43Þ

This result produces energy, heat capacity and entropy of the solid expres-

sions, detailed in the following sections.

16.4.1 Energy

Evib � E0 ¼ kT2 q
qT

ln q3N
vib ð16-44aÞ

¼ ð3N=2Þhn0 þ 3NkT2½ðhn0=kT2Þe�hn0=kT=ð1 � eð�hn0=kTÞÞ�
ð16-44bÞ

¼ ð3=2ÞNhn0 þ 3Nhn0=ðehn0=kT � 1Þ ð16-44cÞ
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(The constant zero-point energy is frequently lumped together with the zero

of energy term, E0.)

16.4.2 Heat Capacity

CV ¼ dEvib=dT ¼ 3Nhn0½�ehn0=kTð�hn0=kT2Þ�=ðehn0=kT � 1Þ2 ð16-45aÞ

¼ 3Nkðhn0=kTÞ2
ehn0=kT=ðehn0=kT � 1Þ2 ð16-45bÞ

16.4.3 Entropy

S ¼ 3kN ln½e�ð1=2Þhn0=kT=ð1 � e�hn0=kTÞ� þ Evib=T ð16-46aÞ

¼ 3kN lnð1 � e�hn0=kTÞ�1 � ð3=2ÞkNhn0=kT

þ ð3=2ÞNhn0=T þ 3Nhn0=Tðe�hn0=kT � 1Þ ð16-46bÞ

¼ �3kN lnð1 � e�hn0=kTÞ þ 3Nhn0=Tðehn0=kT � 1Þ ð16-46cÞ

Note: In the classical limit, kT � hn0 and

E � E0 � 3Nhn0=ð1 þ hn0=kT þ � � � � 1Þ � 3kNT ¼ 3RT=mol ð16-47Þ

and the heat capacity is

CV ¼ 3kN ¼ 3R=mol ð16-48Þ

The latter agrees with the empirical value of Dulong and Petit.

Note: Figure 16.2 gives a schematic diagram of the variation of the molar heat

capacity of a crystalline solid with temperature. The Einstein theory predicts

correctly the gross features of the heat capacity curve, namely, that it approaches 3R

at high temperature and goes to zero at T ¼ 0 K. It does not agree quantitatively

with the experimental curve at low temperatures, primarily because the model is

oversimplified.

Debye in 1912 used a more realistic model, in which the oscillators are not

completely independent but coupled and obtained results that are better at low

temperatures resulting in the Debye Cube Law, CV � aT3, which we used.
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16.5 SUMMARY

In summary, the statistical mechanical treatment presented here is based on

the notion that each molecule (particle) has its own set of ‘‘private’’ energy

levels and that these energy levels are unaffected by the presence of others.

This was done on purpose to keep the treatment as simple as possible in an

introductory course. As a consequence, the theory was confined to ideal

systems and only applications to ideal gases and ideal solids were presented

to exemplefy the use of statistical mechanics. Statistical mechanics is, of

course, not limited to such systems and, in fact, has a wide range of applica-

tions, including liquids, solids, nonideal gases, electrons, magnetic systems,

and a host of other phenomena. However, their treatments requires more

sophisticated techniques, techniques that are beyond the scope of this course

in this book.

3R

CV

Debye

Einstein

T

Figure 16.2 Schematic plot of CV vs. T based on the Einstein Theory. The dotted curve is a

correction based on the Debye theory.
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APPENDIX I

HOMEWORK PROBLEM SETS

PROBLEM SET I

Chapter 3

1. One mole of an ideal gas is expanded isothermally and reversibly at

T ¼ 300 K from 10 to 1 atm. Calculate the work, w.

2. One mole of an ideal gas is expanded isothermally and irreversibly at

300 K in two steps: (1) by suddenly reducing the external pressure from

10 to 7 atm followed (2) by another sudden reduction of the pressure

from 7 to 1 atm. Calculate w.

3. Starting with dE ¼ dq � PdV, show that

(a) dq ¼ CVdT þ [P þ (qE/qV)T] dV

(b) qCV

qV

� �
T
¼ q

qT
qE
qV

� �
T

� �
V

(c) dq is not an exact differential

4. Show that dq ¼ qE
qP

� �
T
þ P qV

qP

� �
T

� �
dp þ qH

qT

� �
P
dT.

5. Show that CP � CV ¼ TV a2

k .
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6. (a) If a gas obeys the equation of state PV(1 � bP) ¼ RT, show that for

an isothermal expansion the reversible work will be

�w ¼ RT=ð1 � bP2Þ � RTð1 � bP1Þ þ RT ln½P1ð1 � bP2Þ=P2ð1 � bP1Þ�
¼ P2V2 � P1V1 þ RT lnðP2

1V1=P2
2V2Þ

(Hint) Integrate by parts to evaluate
ÐV2

V1
PdV

(b) If the gas is heated at constant pressure, show that �w ¼
RT2

1�b2P
� RT1

1�b1P

7. One mole of an ideal gas is contained in a cylinder provided with a

tightly fitting piston that is not free of friction. To cause this piston to

move, one must apply a constant extra force in the direction of move-

ment. If this friction force is divided by the area of the piston, it reduces

to a pressure equivalent of friction, PÐ.

(a) Derive expressions for the work and heat attending the isothermal

expansion of the ideal gas from a pressure P1 to P2. If the gas is

now compressed from P2 to P1, what are q and w?

(b) Calculate in calories the values of q and w for 1 mol of the ideal gas

expanded irreversibly from 1 atm to 0.5 atm if PÐ ¼ 0.1 atm and

temperature ¼ 25�C.

PROBLEM SET II

Chapters 3 and 4

1. Starting with dq ¼ dE þ PdV, show that

(a) dq ¼ qE
qP

� �
V

dP þ qH
qV

� �
P

dV

(b) dq ¼ CV
qT
qP

� �
V

dP þ CP
qT
qV

� �
P
qV

2. (a) Show that for an elastic hard-sphere gas, obeying the equation of

state PðV � bÞ ¼ nRT, undergoing a transition from state 1 to 2 at

constant temperature

q ¼ �w ¼ nRT ln
ðV2 � bÞ
ðV1 � bÞ

(b) Show that for an elastic hard-sphere gas

CP � CV ¼ nR
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3. Show that for 1 mol of an elastic hard-sphere gas undergoing an adiabatic

change

T2=T1 ¼ ½ðV1 � bÞ=ðV2 � bÞ�g�1

4. Obtain an expression for the isothermal work at constant temperature

associated with the transition from state 1 to state 2 of 1 mol of a gas

obeying the van der Waals Equation of State,

P þ a

V2

� �

ðV � bÞ ¼ RT

5. One mole of an elastic hard-sphere gas with CV ¼ (3/2)R and b ¼ 0.025

liter and an initial temperature of 300 K is compressed reversibly from 10

to 1 liter. Calculate q, w, �E, and �H, if the process is carried out

(a) Isothermally

(b) Adiabatically

PROBLEM SET III

Chapter 4

1. Derive

qCV

qV

� �

T

¼ T
q2P

qT2

� �

V

2. (a) One mole of an elastic hard-sphere gas is compressed isothermally

and reversibly from 600 to 300 cm3 at 300 K, b ¼ 20 cm3. Calculate

q, w, �E, �H, and �S.

(b) If the same gas is compressed irreversibly at 300 K from 600 to

300 cm3, by applying constant pressure of 2 atm, what are the values

of q, w, �E, �H, and �S?

3. Prove that two reversible adiabats cannot intersect.

4. Show that:

qS

qT

� �

P

¼ CP

T
;

qS

qP

� �

T

¼ 1

T

qH

qP

� �

T

�V

� 	
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5. Derive expressions for mJ and mJT for

(a) Elastic hard-sphere gas

(b) van der Waals gas

6. Derive expressions for �E and �H for

(a) Isothermal change of an elastic hard-sphere gas

(b) Isothermal change of a van der Waals gas

(c) Adiabatic change of an elastic hard-sphere gas

7. One mole of supercooled water at �5�C is transformed to ice at �5�C.

Calculate �S. The heat of fusion of ice at the normal melting point of

273.15 K and 1 atm is 6000 J/mol; the heat capacities of supercooled

water and ice are, respectively, CP (liquid H2O) ¼ 75.3 J 	K�1 	mol�1 and

CP (solid H2O) ¼ 37.7 J 	K�1 	mol�1.

PROBLEM SET IV

Chapters 5 and 6

1. Derive the Maxwell relations.

2. Derive the Gibbs-Helmholtz equations.

3. (a) Obtain from E ¼ E (S, V, n1, . . ., nr) by a Legendre transformation

the function f¼ f(T, P, m1,. . ., mr).

(b) Verify that f is a function of the variables T, P, m1,. . ., mr.

(c) Relate qP
qT

� �
mi

and qP
qmi


 �

T;mj6¼i

to S, V, n1,. . ., nr.

4. Show that qG
qni


 �

T;P; nj 6¼ i

¼ qA
qni


 �

T;V; nj 6¼ i

¼ qH
qni


 �

S;P; nj 6¼ i

¼ qE
qni


 �

S;V; nj 6¼ i

5. Show that lim
T!0

CP ¼ 0

6. The molar heat capacity of SO2 (Giaugque and Archibald, 1937) is

T CP T CP

(K) (cal/K mol) (K) (cal/K mol)

15 (solid) 0.83 110 11.97

20 1.66 120 12.40

25 2.74 130 12.83

30 3.79 140 13.31

35 4.85 150 13.82

40 5.78 160 14.33

45 6.61 170 14.85
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T CP T CP

(K) (cal/K mol) (K) (cal/K mol)

50 7.36 180 15.42

55 8.02 190 16.02

60 8.62 197.64 20.97

(liquid)

70 9.57 220 20.86

80 10.32 240 20.76

90 10.93 260 20.66

100 11.49 263.1 4.65

(gas)

The heat fusion is 1,769 cal/mol at the normal melting point of 197.64 K,

and the heat of vaporization is 5,960 cal/mol at the normal boiling point of

263.1 K. Calculate the entropy of gaseous SO2 at its boiling point and 1 atm

pressure.

PROBLEM SET V

Chapter 7

1. (a) A system consists of two parts (‘‘phases’’) separated by a semicon-

ducting wall that allows heat to flow only from phase ‘‘2’’ to phase

‘‘1.’’ Use the enthalpy function, H, to show that the equilibrium

temperatures T(1) and T(2) of the 2 phases must satisfy the relation

T(1) � T(2).

(b) If the partition in part a is semi-permeable to chemical special ‘‘i’’

such that i can flow from phase ‘‘1’’ to phase ‘‘2.’’ Use the Hemholtz

free energy, A, to obtain a relation between the equilibrium chemical

potention mð1Þi and mð2Þi of the two phases.

2. Show that, for a homogeneous system to be stable, the condition
qP
qV

� �
T
< 0 must be met. (Use Helmholtz function, A, to prove this.

Why the Helmholtz?)

PROBLEM SET VI

Chapters 7 and 8

1. Show that if d(1)G and d(2)G are zero, then d(3)G is also zero.

2. Develop conditions for stable equilibrium using the enthalpy function H.

In particular, what can you say about T, P, mi, and their derivatives?
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3. Derive explicit expression for HðT, PÞ, SðT, PÞ, m(T, P), and f in terms of

(a) The second viral coefficient

(b) The van der Waals equation of state constants a and b

4. The chemical potential of an ideal gas (i.e., a gas in the limit P ! 0) can

be derived by statistical mechanics and has the form

� m� H0

RT

� �

¼ ln
T

7
2

P�

where H0 and � are constants.

(a) Derive expressions for m�, S
�
, and H

�
in terms of these constants and

whatever variables are needed.

(b) Write expressions for (the real gas) quantities m(T, P), SðT;PÞ, and

HðT;PÞ in terms H0, �, and needed variables.

PROBLEM SET VII

Chapters 9 and 10

1. At 298.15 K and 1.00 atm, �G for the conversion of rhombic sulfur to

monoclinic sulfur is 18 cal/mol. Which of the two phases is the more

stable under these conditions and why? The density of rhombic sulfur is

1.96 g/cm and that of monoclinic sulfur is 2.07 g/cm. Estimate the

minimum pressure at which the other phase would be stable at 298.15 K.

2. The molar enthalpy of a gas can be written as

HðT; PÞ ¼
ðT

CP!0dT þ H0 þ
ðP

0

V � T
qV

qT

� �

P

dP0
� 	

Obtain for a gas obeying the viral equation of state PV ¼ RT þ B2ðTÞP:

(a) An expression for the heat capacity CP (T, P) in terms of CP!0 and B2

(b) An expression for CPðT; PÞ in terms of CP!0 and the van der Waals

constants a and b.

3. The specific volume of liquid water is 1 cm3/g, the specific heat of

vaporization is 540 cal/g, and the vapor pressure (PV) is 1 atm. If the

liquid (or applied) pressure ðPl Þ is 1,000 atm, what is the boiling

temperature?

4. Derive expressions for �Gmix, �Smix, �Hmix, and �Vmix for an ideally

dilute solution, using Convention II.
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PROBLEM SET VIII

Chapters 11 and 12

1. If a liquid surface is increased adiabatically, will the temperature rise,

fall, or remain the same?

2. Starting with dE ¼ TdS � PdV þ Ydy þ mdn, derive expressions for the

following:

(a) d� where � is a function of the natural variables S, P, y, and n

(b) df where f is a function of the natural variables T, P, Y, and n

3. (a) Show by thermodynamics arguments that if a rubber strip is in stable

equilibrium then qf
qL

� �
T
> 0.

(b) Show that the result of part a requires that f(L) in the equation of

state f ¼ Tf(L) must be an increasing function of L, i.e., df
dL

> 0.

(c) Determine the sign of a ¼ 1
L

qL
qT

� �
f
.

(d) Show that E is independent of L.

(e) The rubber strip is stretched under isothermal conditions. Will the

heat q be positive, negative, or zero?

4. Show that the stability conditions for thermodynamic potentials (E, H, A,

G) leads to

q2G

qP2

� �

T1ni

� 0
q2A

qT2

� �

V1ni

� 0

PROBLEM SET IX

Chapters 13–16

1. Atomic chlorine consists of 35Cl (75%) and 37Cl (25%). What fraction of

molecular chlorine Cl2 is

35Cl �35Cl 35Cl �37Cl 37Cl �37Cl

2. Starting with �CMB
D ¼

Q

i

g
ni
i

Ni!
and using

q ln�CMB
D

qNi
¼ aþ bei. Derive an

expression for Ni/N in terms of a, b, gi, and ei.

3. A system consists of 1,000 particles, the energy levels are e1 ¼ 1 and

e2 ¼ 2 units, the lowest level is 3-fold degenerate, and the upper level is
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2-fold degenerate. The total energy is 1,200 units. What is the population

of the two levels (in the most probably distribution) using Maxwell-

Boltzman statistics?

4. Consider a system of N distinguishable particles partitioned among two

nondegenerate energy levels of energy O and e. Derive an expression for

the energy and the temperature in terms of N1, the number of particles in

the upper state. Show that, as the energy increases past the value 1
2

Ne, the

temperature approaches þ1, changes discontinuously to �1, and takes

negative values for higher energies.

PROBLEM SET X

Chapters 13–16

1. The vibrational energy of a diatomic molecule is Ev ¼ v þ 1
2

� �
hno, where

v is a quantum number that runs from 0 to 1, h is Planck’s constant, and

no is the vibration frequency. For N2, no ¼ 6.98 � 1013 s�1. Calculate the

ratio of the n¼ 1 to n¼ 0 population (i.e., N1/N0) at

(a) 25�C

(b) 800�C

(c) 3,000�C

2. Show that for an ideal gas obeying (CMB statistics):

S ¼ kN ln
q

N
þ kNT

q ln q

qT

� �

NVv

þ kN

How does the ‘‘zero of energy’’ affect the entropy?

3. Calculate: E � E0, H � E0, A � E0, m� eo, Cv of 1 mol of He gas at

T ¼ 273 K, and V ¼ 22.4 liters. The molecular weight (MW) of He is 4.

The ground state electronic degeneracy, (gel,0) is 1.

4. Calculate the equilibrium constant Kc for the reaction 35Cl2 Ð 235Cl at

T ¼ 2,000 K. The vibration frequency (no) of Cl2 ¼ 1.694 � 1013 s�1,

yv ¼ 813 K, and yR ¼ 0.351 K. The molar dissociation energy (Do) of Cl2
is 238.9 kJ. The ground state electronic degeneracies are gel,0 ¼ 1 for Cl2
and gel,0 ¼ 4 for Cl. The molecular weight of 35Cl is 35.
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APPENDIX II

SOLUTIONS TO PROBLEMS

SOLUTION TO SET I

1. PV ¼ RT;w ¼ �
ð

PexdV ¼
1

ð2

PdV

¼ �RT
1

ð2

dV=V ¼ �RT ln V2=V1

w ¼ þRT ln P2=P1 ¼ �RT ln 10=1

¼ �0:08206 atm � L � K�1 � mol�1 � 300 K ln 10=1

¼ �56:7 atm � L � mol�1

ð¼ �56:7 atm � L � mol�1 � 8:31 J=0:08206 atm L

¼ �5:74 � 103 J=molÞ:

2. P1 ¼ 10 atm : V1 ¼ RT=P1

V1 ¼ 0:08206 atm � L � K�1 � mol�1 � 300 K=10 atm

¼ 2:46 L=mol

P2 ¼ 7 atm :V2¼RT=P2¼0:08206 atm � L � K�1 � mol�1�300 K=7 atm

¼ 3:52 L=mol
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P3 ¼ 1 atm : V3 ¼ RT=P3

¼ 0:08206 atm � L � K�1 � mol�1 � 300 K=1 atm

¼ 24:62 L=mol

�w ¼ ½7ð3:52 � 2:46Þ þ 1ð24:62 � 3:52Þ	 atm � L � mol�1

¼ 28:51 atm � L � mol�1

Note: If the work were carried out reversibly, from 10 to 1 atm, it would be

�56:7 atm � L � mol�1, the same as in Problem 1.

3. dE ¼ dq � PdV

(a) dq ¼ dE þ PdV ¼ ðqE=qTÞVdT þ ½ðqE=qVÞT þ P	dV

¼ CVdT þ ½P þ qE=qV	TdV

(b) dE ¼ ðqE=qTÞV þ ðqE=qVÞTdV ¼ CVdT þ ðqE=qVÞTdV

Because dE is an exact differential, the reciprocity relation gives

ðqCv=qVÞT ¼ ½q=qTðqE=qVÞT	V

(c) If dq were an exact differential, then by solution 3a ðqCV=qVÞT

would have to be equal to ½q=qTðP þ ðqE=qVÞTÞ	V but it is not

according to solution 3b. Hence, dq is not exact.

4. dq ¼ dH � V dP; H ¼ E þ PV

dq ¼ ðqH=qPÞT þ ðqH=qTÞP � V dP

¼ ðqE=qPÞTdP þ PðqV=qPÞTdP þ V dP þ ðqH=qTÞPdT � V dP

¼ ½ðqE=qPÞT þ PðqV=qPÞT	dP þ ðqH=qTÞP

5. Equation 3-45 gives,

CP � CV ¼ TðqP=qTÞVðqV=qTÞP

¼ �TV½ð1=VÞðqV=qTÞP	=½1=VðqV=qPÞT	 � ½1=VðqV=qTÞP	
¼ TVa2=k

6a. �w ¼
ð

PdV ¼ P2V2 � P1V1 � RT

ð
dP=Pð1 � bPÞ;

V ¼ RT=ð1 � bPÞP

�w ¼ P2V2 � P1V1 � RT

ð
½1=P þ b=ð1 � bPÞ	dP

¼ P2V2 � P1V1 � RTfln P2=P1 � ln½ð1 � bP2Þ=ð1 � bP1Þ	g
¼ RT=ð1�bP2Þ� RT=ð1 � bP1Þþ RT ln½P1ð1� bP2Þ=P2ð1� bP1Þ	
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From V ¼ RT=½Pð1 � bpÞ	 ) 1=ð1 � bpÞ ¼ PV=RT. Hence,

1=ð1 � bp1Þ ¼ P1V1=RT; 1=ð1 � bp2Þ ¼ P2V2=RT

Thus, �w ¼ P2V2 � P1V1 þ RT lnfP1=P2½ðP1V1=RTÞ=ðP2V2=RTÞ	g
¼ P2V2 � P1V1 þ RT lnðP2

1V1=P2
2V2Þ

6b. �w ¼ PV2 � P1V1; P constant ) P ¼ P2 ¼ P1

In general, b varies with T. Let us assume that at T2 b ¼ b2 and at

T1 b ¼ b1

Then; V2 ¼ RT2=½Pð1 � b2PÞ	; V1 ¼ RT1=½Pð1 � b1PÞ	
and � w ¼ RT2=ð1 � b2PÞ � RT1=ð1 � b1P1Þ

7a. Compression: Pex;c ¼ P þ Pf ; Expansion : Pex;e ¼ P � Pf

Expansion : q ¼ �w ¼
ð2

1

Pex;edV ¼
ð2

1

dVðRT=V � PfÞ

¼ RT ln V2=V1 � PfðV2 � V1Þ

Compression : q ¼ �w ¼
ð1

2

Pex;cdV ¼
ð1

2

dVðRT=V þ PfÞ

¼ �RT ln V2=V1 � PfðV2 � V1Þ
Overall : q ¼ �w ¼ �2PfðV2 � V1Þ

Because V2 > V1, the overall q is negative and w is positive. Thus, by

our convention, work associated with frictional forces is converted

into heat.

7b.
q ¼ �w ¼ RT ln P1=P2 � RTð1=P2 � 1=P1ÞPf

¼ 1:987 cal � K�1 � mol�1 � 298 K½ln 1=0:5 � 0:1ð1=0:5 � 1Þ	
¼ 351 cal=mol

SOLUTION TO SET II

1a. dq ¼ dE � dw ¼ ðqE=qPÞvdP þ ½ðqE=qVÞP þ P	dV

¼ ðqE=qPÞVdP þ ðqH=qVÞPdV

1b. dq ¼ ðqE=qTÞVðqT=qPÞVdP þ ðqH=qTÞPðqT=qVÞPdV

¼ CvðqT=qPÞVdP þ CPðqT=qVÞPdV
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2a. Applying the Thermodynamic Equation of State

ðqE=qVÞT ¼ TðqP=qTÞV � P

to the equation of state P ¼ nRT=ðV � bÞ gives nRT=ðV � bÞ � P ¼ 0

Thus, at constant T, the internal energy E is independent of V, similar

to an ideal gas, and �E ¼ 0. Accordingly,

q ¼ �w ¼ nRT

ð2

1

dV=ðV � bÞ ¼ nRT ln½ðV2 � bÞ=ðV1 � bÞ	

2b. CP � CV ¼ ðqH=qTÞP � ðqE=qTÞV

¼ ðqE=qTÞP þ PðqV=qTÞP � ðqE=qTÞV

ðqE=qTÞP ¼ ðqE=qTÞV þ ðqE=qVÞTðqE=qTÞP ¼ ðqE=qTÞV þ 0

CP � CV ¼ PðqV=qTÞP; V ¼ ðnRT=PÞ þ b; ðqV=qTÞP ¼ nR=P

Thus, CP � CV ¼ nR.

3. dE ¼ dq þ dw; dE þ PdV ¼ 0ðadiabaticÞ

CVdT þ RTdV=ðV � bÞ ¼ 0

CVdT=T þ RdV=ðV � bÞ ¼ 0

CV lnðT2=T1Þ þ R ln½ðV2 � bÞ=V1 � bÞ	 ¼ 0 Cv constant

R ¼ CP � CV

lnfðT2=T1Þ½ðV2 � bÞ=ðV1 � bÞ	ðg�1Þg ¼ 0

T2=T1 ¼ ½ðV1 � bÞ=ðV2 � bÞ	ðg�1Þ

4. �w ¼
ð2

1

P dV; P ¼ RT=ðV � bÞ � a=V2

�w ¼ RT

ð2

1

½dV=ðV � bÞ � a dV=V2	

¼ RT ln½ðV2 � bÞ=ðV1 � bÞ	 þ að1=V2 � 1=V1Þ

5a. q ¼ �w ¼
ð2

1

PdV ¼ RT

ð2

1

dV=ðV � bÞ ¼ RT ln½ðV2 � bÞ=V1 � bÞ	

R ¼ 8:314 J � K�1 � mol�1;V2 ¼ 1 L;V1 ¼ 10 L

q ¼�w¼ 8:314 J � K�1 � mol�1 � 300 K ln½ð1� 0:025Þ=ð10� 0:025Þ	

¼ �5:80 kJ=mol
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�E ¼ 0ðisothermalÞ; �H ¼ �E þ�ðPVÞ ¼ P2V2 � P1V1

�H ¼ 8:314 J � K�1 � mol�1 � 300 K½1=ð1 � 0:025Þ � 10=ð10 � 0:025Þ	
¼ 57:70 J=mol

5b. q ¼ 0;w ¼ �E ¼
ð2

1

CVdT ¼ ð3=2ÞRðT2 � T1Þ

T2 ¼ T1½ðV1 � bÞ=ðV2 � bÞ	ðg�1Þ ¼ 300 K½ð10 � 0:025Þ=ð1 � 0:025Þ	2=3

¼ 1; 413:8 K

�E ¼ 13:89 kJ=mol; �H ¼ �E þ RT2V2=ðV2 � bÞ � RT1V1=ðV1 � bÞ
¼ 23:45 kJ=mol

SOLUTION TO SET III

1. dS ¼ dqrev=T ¼ dE=T þ PdV=T ¼ 1=T½ðqE=qVÞTdV þ ðqE=qTÞVdT	 þ PdV=T

Applying the thermodynamic equation of state, ðqE=qVÞT ¼
TðqP=qTÞV � P, gives

dS ¼ ðqP=qTÞVdV þ ðqE=qTÞVdT

¼ ðqP=qTÞVdV þ ðCV=TÞdT

Since dS is an exact differential, the reciprocity relation gives

ðq2P=qT2ÞV ¼ 1=TðqCV=qVÞT or ðqCV=qVÞT ¼ Tðq2P=qT2ÞV

2a. Elastic hard-sphere gas: PðV � bÞ ¼ RT;V2 ¼ 300 cm3;V1 ¼ 600 cm3;
b ¼ 20 cm3

w ¼ �
ð

PdV ¼ �RT

ð
dV=ðV � bÞ

¼ �RT ln½ð300 � 20Þ=ð600 � 20Þ	
¼ 8:314 J � K�1 � mol�1 � 300 K lnð580=280Þ
¼ 1:816 kJ=mol

dE ¼ ðqE=qVÞTdV þ ðqE=qTÞVdT

ðqE=qVÞT ¼ TðqP=qTÞV � P ¼ TR=ðV � bÞ � P ¼ 0

Thus, dE ¼ ðqE=qTÞvdT ¼ CVdT; �E ¼ 0 at constant T

q ¼ �w ¼ �1:816 kJ=mol

�S ¼ qrev=T ¼ �ð1:816 kJ=molÞ=300 K ¼ �6:053 J � K�1 � mol�1
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�H ¼ �E þ�ðPVÞ ¼ 0 þ RT½V2=ðV2 � bÞ � V1=ðV1 � bÞ	
¼ 8:314 J � K�1 � mol�1 � 300 K½300=280 � 600=580	
¼ 92:15 J=mol

2b. The initial and final states are the same as in solution 2a. Consequently,

the values of �E, �H and �S are the same because E, H, and S are

state variables and independent of path. As in solution 2a, q and w are

different:

q ¼ �w ¼ �PexðV2 � V1Þ ¼ �2 atm � ð300 � 600Þ cm3=mol

¼ 600 atm � cm3 � mol�1

¼ 600 atm � cm3 � mol�1 � 8:314 J=ð82:06 atm � cm3Þ
¼ 60:79 J=mol

3. Suppose curves 1–2 and 2–3 are intersecting (reversible) adiabats. Curve

3–1 represents an isotherm. Consider the cyclic process: 1!2, 2!3,

3!1. In this process, q1!2 ¼ 0 (adiabatic transition), q2!3 ¼ 0 (adia-

batic transition), and q3!1 > 0 (isothermal expansion) (see Figure S3.1).

�E ¼ 0 (cyclic process). The net result is the overall q > 0 and

adiab

isoth
13

2

T

V

Figure S3.1 Plot of T vs. V
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consequently w < 0. In other words, heat is converted entirely into work,

in violation of the Kelvin-Planck Principle. The assumption that two

adiabats intersect is invalid.

4. dq ¼ dH � VdP ¼ ðqH=qTÞPdT þ ðqH=qPÞTdP � VdP;

TdS ¼ dqrev

ðqS=qTÞP ¼ dqrev=T ¼ 1=TðqH=qTÞP ¼ CP=T

TðqS=qPÞT ¼ ½ðqH=qPÞT � V 	

5a. Elastic hard sphere: PðV � bÞ ¼ RT

mJ ¼ ðqT=qVÞE ¼ �ðqE=qVÞT=ðqE=qTÞV ¼ �1=CVðqE=qVÞT

ðqE=qVÞT ¼ TðqP=qTÞV � P ¼ TR=ðV � bÞ � RT=ðV � bÞ ¼ 0

Thus; mJ ¼ 0

mJT ¼ ðqT=qPÞH ¼ �ðqH=qPÞT=ðqH=qTÞP

¼ �ð1=CPÞðqH=qPÞT;V ¼ RT=P þ b

ðqH=qPÞT ¼ V � TðqV=qTÞP ¼ RT=P þ b � TR=P ¼ b

mJT ¼ �b=CP

5b. van der Waals Equation: ðP þ a=V2ÞðV�bÞ ¼ RT ! P ¼ RT=ðV � bÞ�
a=V2

ðqE=qVÞT ¼ TR=ðV � bÞ � ½RT=ðV � bÞ � a=V2	 ¼ a=V2

mJ ¼ �ð1=CVÞa=V2

To determine ðqH=qPÞT, one needs ðqV=qTÞP, which is messy because

in the van der Waals Equation, V is present in the denominator. It is

easier to differentiate the form PV � Pb þ a=V � ab=V2 ¼ RT

PðqV=qTÞP � ða=V2ÞðqV=qTÞP þ ð2ab=V3ÞðqV=qTÞP ¼ R

TðqV=qTÞP � V ¼ RT=ðP � a=V2 þ 2ab=V3Þ � V

Replacing P by RT=ðV � bÞ � a=V2 gives

mJT ¼ 1=CPfRT=½RT=ðV � bÞ � 2a=V2 þ 2ab=V3	 � Vg

(Later, after introducing the virial form of the van der Waals equation of

state, we shall see that there is a much simpler, although less exact,

form of the Joule-Thomson coefficient of a van der Waals gas.)
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6a. �E ¼
ð
ðqE=qVÞTdV þ

ð
ðqE=qTÞV

¼ 0 þ 0 for an elastic hard sphere:

�H ¼
ð
ðqH=qPÞTdP þ

ð
ðH=qTÞPdT

¼
ð2

1

bdP ¼ bðP2 � P1Þ

ðsee problem 5 in corresponding solution setÞ

6b. �E ¼
ð2

1

ða=V2ÞdV ¼ �að1=V2 � 1=V1Þ

�H ¼ �E þ�ðPVÞ ¼ �að1=V2 � 1=V1Þ þ P2V2 � P1V1

P2 ¼ RT=ðV2 � bÞ � a=V2
2; P1 ¼ RTðV1 � bÞ � a=V2

1

�H ¼ �2að1=V2 � 1=V1Þ þ RT½V2=ðV2 � bÞ � V1=ðV1 � bÞ	

6c. �Eð¼ wÞ ¼
Ð 2

1
CVdT ¼ CVðT2 � T1Þ for elastic hard sphere, if CV is

constant.

�H ¼
ð
ðqH=qTÞPdT þ

ð
ðqH=qPÞTdT

¼
ð2

1

CPdT þ b

ð2

1

dP

¼ CPðT2 � T1Þ þ bðP2 � P1Þ
for elastic hard sphere if CP is constant:

7. This is an irreversible process. One must choose a reversible path.

H2Oðliquid; 273:15 KÞ ð2Þ !rev H2Oðsolid; 273:15 KÞ
"rev ð1Þ #rev ð3Þ

H2Oðliquid; 268:15 KÞ !irr H2Oðsolid; 268:15Þ

�S ¼ �Sð1Þ þ�Sð2Þ þ�Sð3Þ
¼ ½75:3 lnð273:15=268:15Þ

þ ð�6000=273:15Þ þ 37:7 lnð263:15=273:15Þ	J � K�1 � mol

¼ ½ð75:3 � 37:7Þ lnð273:15=268:15Þ � 6000=273:15	J � K�1 � mol�1

¼ �20:56 J � K�1 � mol�1
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SOLUTION TO SET IV

1. dE ¼ TdS � PdV; reciprocity ! ðqT=qVÞS ¼ �ðqP=qSÞV

dH ¼ TdS þ VdP ðqT=qPÞS ¼ ðqV=qSÞP

dA ¼ �SdT � PdV ðqS=qVÞT ¼ ðqP=qTÞV

dG ¼ �SdT þ VdP ðqS=qPÞT ¼ ðqV=qTÞP

2. dA ¼ �SdT � PdV;A ¼ E � TS;A=T ¼ E=T � S

½qðA=TÞ=qT	V ¼ 1=TðqA=qTÞV � A=T2 ¼ �S=T � E=T2 þ S=T

¼ �E=T2

or

½qðA=TÞ=qð1=TÞ	V ¼ �T2½ðqA=TÞ=qT	V ¼ E

dG ¼ �SdT þ VdP;G ¼ H � TS;G=T ¼ H=T � S

½qðG=TÞ=qT	P ¼ 1=T½qðG=TÞ=qT	P � G=T2

¼ �S=T � H=T2 þ S=T ¼ �H=T2

or

½qG=TÞ=qð1=TÞ	P ¼ �T2½qðG=TÞ=qT	P ¼ H

3a. f ¼ E � SðqE=qSÞV;ni
� VðqE=qVÞS;ni

� �iniðqE=qniÞS;V;nj 6¼ i

¼ TS � PV þ �i mi ni � ST þ VP � �imi ni ¼ 0

3b.

df ¼ dE � TdS � SdT þ PdV þ VdP � �ini dmi � �imidni

dE ¼ TdS � PdV þ �imi dni

! df ¼ �SdT þ VdP � �ini dmi ¼ 0

3c. ðqP=qTÞmi
¼ S=V

VðqP=qmiÞT;mj 6¼ i
� ni ¼ 0 ! ðqP=qmiÞT;mj 6¼ i

¼ ni=V

4. Equation 5-28c gives derivation of

ðqG=qniÞT;P; nj 6¼ i
¼ ðqE=qniÞS;V; nj 6¼ i
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We derive here the relation between G and H.

dG ¼ �SdT þ VdP þ �iðqG=qniÞT;P; nj 6¼ i
dni

dH ¼ TdS þ VdP þ �iðqH=qniÞS;P; nj 6¼ i
dni

G ¼ H � TS;! dG ¼ dH � TdS � SdT

Thus,

� SdT þ VdP þ �iðqG=qniÞT;P; nj 6¼ i
dni

¼ VdP � SdT þ �iðqH=qniÞS;P; nj 6¼i
dni

Thus,

ðqG=qniÞT;P;nj 6¼ i
¼ ðqH=qniÞS;P;nj 6¼ i

5. G ¼ TS; ðqG=qTÞP ¼ �S ¼ ðG � HÞ=T

lim
T!0

ðqG=qTÞP ¼ lim
T!0

ðG � HÞ=T ¼ 0=0

Applying l’Hospital’s Rule gives

lim
T!0

ðqG=qTÞP ¼ lim
T!0

½ðqG=qTÞP=ðqT=qTÞ � ðqH=qTÞP=ðqT=qTÞ	

¼ ½0=1 � lim
T!0

CP=1	 ¼ 0

! lim
T!0

CP ¼ 0

6. Plot CP=T vs. T (see Fig S4.1). There are discontinuities at T ¼
197:64 K (solid-liquid transition) and at T ¼ 263:1 K (liquid-gas transi-

tion). No data are given for T < 15 K. Using the Debye Cube Law,

10
0
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Cp/T

T

20

50 100 150 200 250
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Figure S4.1 Plot of Cp vs. T
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CP ¼ aT3, for temperatures between 0 and 15 K yields Sð15 KÞ�
Sð0 KÞ ¼ S15 K ¼

Ð 15

0
ðCP=TÞdT ¼ ð1=3ÞaT3.

The value of CP at T ¼ 15 K is 0:83 � cal � K�1 � mol�1 producing

a ¼ 0:83=153 cal � K�4 � mol�1 ¼ 2:46 � 10�4 K�4 � mol�1

T CP=T T CP=T

15 5:53 � 10�2 110 1:09 � 10�1

20 8:53 � 10�2 120 1:03 � 10�1

25 1:096 � 10�1 130 9:87 � 10�2

30 1:26 � 10�1 140 9:51 � 10�2

35 1:386 � 10�1 150 9:21 � 10�3

40 1:45 � 10�1 160 8:46 � 10�2

45 1:47 � 10�1 170 8:74 � 10�2

50 1:47 � 10�1 180 8:57 � 10�2

55 1:46 � 10�1 190 8:43 � 10�2

60 1:44 � 10�1 197.64 1:06 � 10�1

70 1:37 � 10�1 220 9:48 � 10�2

80 1:29 � 10�1 240 8:65 � 10�2

90 1:21 � 10�1 260 7:95 � 10�2

100 1:51 � 10�1 263.1 1:77 � 10�2

The entropy at the boiling point T ¼ 363:1 K is obtained by adding the

following:

ð1=3 � 0:83 þ area I þ 1; 769=197:64 þ area II þ 5; 960=263:1Þcal � K�1 � mol�1:

SOLUTION TO SET V

1a. Criteria for stable equilibrium requires that a virtual variation of H,

under constraints of constant S, P, and ni, HS;P; ni
� 0. This condition

can be derived from dE � TdS � PdV þ �imidni. Adding d(PV) to both

sides of the equaton produces

dðE þ PVÞ � TdS � PdV þ �imidni þ PdV þ VdP

dH � TdS þ VdP þ �imidni

dHS;P; ni
� 0 ) HS;P; ni

� 0

For stable equilibrium of systems that are ‘‘normal’’ (where there are no

restrictions to the flow of heat, volume changes, and flow of matter),

first- and second-order variations are, respectively, dð1ÞHS;P; ni
¼ 0 and

dð2ÞHS;P; ni
> 0.
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In the present problem, heat is restricted to flow only from ‘‘2’’ to

‘‘1,’’ and so the first-order variation is not necessarily zero but may be

positive., i.e. dð1ÞHS;P;ni
� 0. Holding ni constant (variation in P is not

allowed) and varying parts of S, keeping total S fixed so that

dSð1Þ ¼ �dSð2Þ with dSð1Þ > 0, gives

dð1ÞHS;P; ni
¼ Tð1ÞdSð1Þ þ Tð2ÞdSð2Þ � 0

! ½Tð1Þ � Tð2Þ	dSð1Þ � 0 and thus Tð1Þ � Tð2Þ

1b. Using the conditions AT;V; ni
� 0 and dð1ÞAT;V; ni

� 0 and holding all

variations constant except dð1Þni
¼ �dni

ð2Þ with dni
ð2Þ > 0, we obtain

dð1ÞAT;V; ni
¼ mð1Þi dn

ð1Þ
i þ mð2Þi dni

ð2Þ ¼ ½mð2Þi � mð1Þi 	dni
ð2Þ � 0

or

mð2Þi � mð1Þi

2. A homogeneous system is ‘‘normal’’ in the sense that the partition

between the two parts is fully heat conducting, fully deformable, and

fully permeable. Consequently, temperature, pressure, and chemical

potential of each species is uniform throughout. Thus, the first-order

variation, dð1ÞAT;V; ni
, is zero and we must go to the second-order

variation, dð2ÞAT;V; ni
, which for stable equilibrium must be positive.

Holding constant variations in ni (T is already constant) and allowing

variations in V, namely, dVð1Þ ¼ �dVð2Þ, we get

dð2ÞAT;V; ni
¼ ½q2A=qðVð1ÞÞ2	T;Vð2Þ;ni

½dVð1Þ	2 þ ½q2A=qðVð2ÞÞ2	T;Vð1Þ;ni
½dVð2Þ	2 > 0

¼ ð�qPð1Þ=qVð1ÞÞT;Vð2Þ;ni
ðdVð1ÞÞ2 þ ð�qPð2Þ=qVð2ÞÞT;Vð1Þ;ni

ðdVð2ÞÞ2 > 0

Because ð�dVð1ÞÞ2 ¼ ð�dVð2ÞÞ2
and the pressure is uniform, i.e.,

Pð1Þ ¼ Pð2Þ ¼ P we get

½�ðqP=qVð1ÞÞT;Vð2Þ;ni
� ðqP=qVð2ÞÞT;Vð1Þ;ni

	 > 0 or

½ðqP=qVð1ÞÞT;Vð2Þ;ni
þ ðqP=qVð2ÞÞT;Vð1Þ;ni

< 0

If we denote the partial molar volume of species i by the symbol �VVi, we

can write for the volume element Vð1Þ ¼ �i n
ð1Þ
i

�VVi and Vð2Þ ¼ �i ni
ð2Þ �VVi.

It is obvious that, since the ni are always positive, we must have

ðqP=qVÞT < 0 as a requirement for stable equilibrium.

188 SOLUTIONS TO PROBLEMS



SOLUTION TO SET VI

1. Knowing that dð1ÞGT;P;ni
¼ 0 means that fluctuations can proceed in both

directions, i.e., the system is ‘‘normal.’’ Since n
ð2Þ
i þ n

ð2Þ
i is constant, we

have dn
ð1Þ
i ¼ �dn

ð2Þ
i . We also know that dð2ÞGT;P;ni

¼ 0, so we must go to

dð3ÞGT;P;ni
� 0.

dð3ÞGT;P;ni
¼ 1=6f½q3Gð!Þ=qðnð2Þi Þ3	T;P;nj 6¼i

ðdn
ð!Þ
1 Þ3

þ ½q3Gð2Þ=qðnð2Þi Þ3	T;P;nj 6¼ i
ðdn

ð2Þ
i Þ3g � 0:

If dn
ð1Þ
i > 0, so is ðdn

ð1Þ
i Þ3

and ðdni
ð2ÞÞ3 < 0. Therefore, we can write

dð3ÞGT;P;ni
¼ 1=6f½q3Gð!Þ=qðnð1Þ

i Þ3	T;P;nj 6¼ i

� ½q3Gð2Þ=qðnð2Þi Þ3	T;P;nj6¼i
gðdn

ð1Þ
i Þ3 � 0:

If dn
ð1Þ
i < 0, so is ðdn

ð1Þ
i Þ3

and ðdn
ð2Þ
i Þ3 > 0. We have then

dð3ÞGT;P;ni
¼ 1=6f½q3Gð!Þ=qðnð1Þi Þ3	T;P;nj 6¼ i

� ½q3Gð2Þ=qðnð2Þi Þ3	T;P;nj 6¼ i
gðdn

ð1Þ
i Þ3 � 0:

The only condition that is consistent is the equal sign, or dð3ÞGT;P;nj 6¼ i
¼ 0.

2. In HS;P;ni
¼ dð1ÞHS;P; ni

þ dð2ÞHS;P; ni
þ . . . > 0, P is fixed, but there can

be variations in S and ni.

(a) Variation in S gives

dð1ÞHS;P; ni
) ½Tð1Þ � Tð2Þ	 ¼ 0 or Tð1Þ � Tð2Þ ¼ T

dð2ÞHS;P; ni
) 1

2
½T=C

ð1Þ
P þ T=C

ð2Þ
P 	 > 0

or

CP > 0 except when T ¼ 0

(b) Variation in ni gives

dð1ÞHS;P;nj 6¼ i
! ½mð1Þi � mð2Þi 	 ¼ 0 or mð1Þi ¼ mð2Þi ¼ mi

dð2ÞHS;P; nj 6¼ i
! 1

2
f½qmi=qn

ð1Þ
i 	S;P; nj6¼i

þ ½qm=qn
ð2Þ
i 	S;P;nj6¼i

gðdn
ð1Þ
i Þ2 > 0

or

ðq mi=dniÞS;P; nj 6¼i
> 0
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3. In this problem, all the macroscopic variables V, H, S refer to molar

quantities.

HðT;PÞ ¼ H0ðTÞ þ
ðP

0

½V � TðqV=qTÞPdP0	;V ¼ RT=P þ B2ðTÞ

ðqV=qTÞP ¼ R=P þ dB2=dT;V ¼ TðqV=qTÞP

¼ ðRT=PÞ þ B2ðTÞ �
TR

P
� TdB2=dT

(a) HðT;PÞ ¼ H0ðTÞ þ
ðP

0

½B2ðTÞ � TdB2=dT	dP0

¼ H0 þ ðB2 � TdB2=dT	P
(b) B2ðTÞ ¼ b � a=RT; dB2=dT ¼ a=RT2

! HðT;PÞ ¼ H0ðTÞ þ ðb � a=RT � Ta=RT2Þ
¼ H0ðTÞ þ ðb � 2a=RTÞP

SðT;PÞ ¼ S0ðTÞ � R lnðP=P0Þ þ
ðP

0

½R=P � ðqV=qTÞP	dP0

(a) SðT; PÞ ¼ S0 � R lnðP=P0Þ þ
ðP

0

½R=P � R=P � dB2=dT	dP0

¼ S0ðTÞ � R lnðP=P0Þ � dB2=dT

(b) SðT; PÞ ¼ S0ðTÞ � R lnðP=P0Þ � aP=RT2

mðT; PÞ ¼ m0ðTÞ þ RT lnðP=P0Þ þ
ðP

0

½V � RT=P0	dP0

(a) mðT; PÞ ¼ m0ðTÞ þ RT lnðP=P0Þ þ
ðP

0

ðRT=P0 þ B2 � RT=P0	dP0

¼ m0ðTÞ þ RT lnðP=P0Þ þ B2ðTÞP

(b) mðT;PÞ ¼ m0ðTÞ þ RT lnðP=P0Þ þ ðb � a=RTÞP

f ¼ P exp½1=RT

ðP

0

ðV � RT=P0ÞdP0	

a) f ¼ P exp½B2ðTÞP=RT	
b) f ¼ P expfð1=RTÞðb � a=RTÞPg

4a. From �ðm� H0Þ=RT ¼ lnðT7=2=P�Þ, it must be assumed that T7=2=P�
is dimensionless. We split this quantity into terms involving T, P, and �;

however, in doing so we introduce unit quantitities T0, P0 to make the
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logarithmic terms dimensionless. We replace the logarithmic term by

½ðT=T0Þ7=2=ðP=P0Þ	 � ½ðT0Þ7=2=ðP0�Þ	. This gives

m ¼ H0 � ð7=2Þ ln T=T0 þ RT lnðP=P0Þ þ RT ln½P0�=ðT0Þ7=2	

(a) The problem states that the above expression is good only for an

ideal gas. But we know from thermodynamics that for an ideal gas

mðT; PÞ ¼ m0ðTÞ þ RT lnðP=P0Þ

We therefore identify

m0ðT; PÞ ¼ H0 � ð7=2ÞRT ln T=T0 þ RT ln½P0�=ðT0Þ7=2	
S0ðTÞ ¼ �ðqm0=qTÞP ¼ ð7=2ÞR lnðT=T0Þ þ ð7=2ÞR � R ln½P0�=ðT0Þ7=2	
H0ðTÞ ¼ m0ðTÞ þ TS0ðTÞ ¼ H0 þ ð7=2ÞRT

4b. Using the above expressions for m0, H 0, and S 0, we obtain for the real

gas

mðT;PÞ ¼ H0 � ð7=2ÞRT ln T=T0 þ RT lnðP=P0Þ þ RT ln½P0�=ðT0Þ7=2	

þ
ðP

0

ðV � RT=P0ÞdP0

SðT;PÞ ¼ ð7=2ÞR ln T=T0 þ ð7=2ÞR � R ln½P0�=ðT0Þ7=2	

þ
ðP

0

½R=P0 � ðqV=qTÞP0 	dP0

Hð;PÞ ¼ H0 þ ð7=2ÞRT þ
ðP

0

½V � TðqV=qTÞP0 dP0	

SOLUTION TO SET VII

Note: In this set the quantities G, H, S, and V represent molar quantities.

1. At 298.15 K, rhombic sulfur, Sr, has a lower free energy per mole or

chemical potential, mr, than monoclinic sulfur, Sm; therefore, in the

reaction Sr ! Sm at T ¼ 298:15 K and P0 ¼ 1 atm, Sr is more stable.

Let �m ¼ mm � mr and then ðq�m=qPÞT ¼ Vr � Vm ¼ �V. The

volume difference ð�VÞ is as follows:

�V ¼ 32ð1=2:07 � 1:1:96Þcm3mol�1 ¼ �2:711 � 10�2cm3=mol
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At the equilibrium pressure, Peq, Sm becomes more stable. There are

several ways to calculate Peq. We discuss three.

(1)

ð
d�m ¼

ð
�VdP � �V

ðPeq

1

dP � �VðPeq � 1Þ

�mðPeqÞ ��mð1 atmÞ � �VðPeq � 1Þ

0�ð18=32Þ cal=mol ¼ �2:711 � 10�2cm3 � mol�1ðPeq � 1Þ

� 1:987 cal=ð82:06 atm � cm3Þ

¼ �½6:57 � 10�4cal=ðmol atmÞ	 � ðPeq � 1Þ
Peq ¼ 857:8 atm

(2) We can also use the expressions for condensed systems:

mðT;PÞ ¼ m0ðT;P ¼ 0Þ þ PVðT; 0Þ½1 � kP=2	

The quantity within square brackets is approximately one.

mmðT;PÞ � mmðT;P ¼ 1 atmÞ � ðPeq � 1ÞVmðT; 0Þ
mrðT; PÞ � mrðT;P ¼ 1 atmÞ � ðPeq � 1ÞVrðT; 0Þ

At equilibrium, mmðT; PeqÞ ¼ mrðT; PeqÞ and so

�½ðmmðT; P ¼ 1 atmÞ � mrðT;P ¼ 1 atmÞ	 ¼ ðPeq � 1ÞðVm � VrÞ

or

��mðT; P ¼ 1 atmÞ ¼ ðPeq � 1Þ�V

which is the same as outlined in point 1, above.

(3) ðq ln Ka=qPÞT ¼ ��V0=RT ! ln KaðT;PeqÞ � ln KAðT;P ¼ 1 atmÞ
� �ð�V0=RTÞðPeq � 1Þ, KaðT; PeqÞ ¼ 1, and thus � ln KaðT;P ¼
1 atmÞ ¼ ��V0=RTðPeq � 1Þ. Because ln KaðT; P ¼ 1atmÞ ¼ �m0=
RT, we obtain

�m0ðT;P ¼ 1 atmÞ ¼ ��V0ðPeq � 1Þ

which is the same as outlined in point 1 above.

2. HðT; PÞ ¼
ðT

CP!0ðTÞdT0 þ H0 þ
ðP

0

½V � TðqV=qTÞP0 	dP0

V ¼ RT=P þ B2ðTÞ;TðqV=qTÞP0 ¼ RT=P0 þ T dB2=dT

HðT; PÞ ¼
ðT

CP!ðTÞdT0 þ H0 þ ½B2ðTÞ � T dB2=dT	P
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B2ðTÞ ¼ b � a=RT;T dB2=dT ¼ aT=RT2

! HðT; PÞ ¼
ðT

CP!0 dT0 þ H0 þ ½b � 2a=RT	P

Then for problems 2a and 2b, respectively,

(a) CPðT;PÞ ¼ ðqH=qTÞP ¼ CP!0ðTÞ
þ ½ðdB2=dT � Td2B2=dT2 � dB2=dTÞ	P

¼ CP!0ðTÞ � Tðd2B2=dT2ÞP

(b) CPðT; PÞ ¼ CP!0ðTÞ þ ð2a=RT2ÞP

3. When P1 ¼ 1 atm and Pv ¼ 1 atm, water boils at 100�C or 373 K. When

P1 ¼ 103 atm and Pv ¼ 1 atm, the boiling temperature, Tb, can be

obtained from the generalized Clapeyron Equation:

ðqP1=qTÞPv ¼ ��Hvap=TV
1

¼ �540 cal=ðT � 1 cm3Þ � 82:06 � 104 atm cm3=1:987 cal

� �2:23 � 104 atm=T

ð1;000

1

dP0 � �2:23 104 atm

ðTb

373

dT=T ¼ �2:23 � 104 atm lnðTb=373 KÞ

ð1; 000 � 1Þ � �2:23 � 104 atm lnðTb=373Þ
Tb � 357 K

4. For an ideally dilute solution, mi ¼ m0
i þ RT ln xi

Con I : m0
i ¼ m�i ðall iÞ

Con II : m0
1 ¼ m�1 ðsolvent ‘‘1’’Þ

m0
i 6¼ m�i ðsolute ‘‘i’’; i 6¼ 1Þ

By definition, �Gmix ¼
P

i niðm0
i � m�i Þ.

� Con I: �Gmix ¼ RT �ni ln xi ðall iÞ
�Smix ¼ �ðq�Gmix=qTÞP ¼ �R ln ni ln xi

�Hmix ¼ ½qð�Gmix=TÞ=qð1=TÞ	P ¼ 0

�Vmix ¼ ðq�Gmix=qPÞT ¼ 0
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� Con II:

�Gmix ¼ �i niðmi � m0
i Þ þ n1ðm0

1 � m�1Þ þ �i6¼1niðm0
i � m�i Þ

¼ RT�i ni ln xi þ 0 þ �i6¼1niðm0
i � m�i Þ

�Smix ¼ �R�i ln xi � �i6¼1niðS0
i � S�

i Þ
�Hmix ¼ 0 þ �i6¼1niðH0

i � H�
i Þ

�Vmix ¼ 0 þ �i6¼1niðV0
i � V�

i Þ

SOLUTION TO SET VIII

1. ðqT=qAÞS ¼ �ðqS=qAÞT=ðqS=qTÞA ¼ ðT=CAÞðqs=qTÞA

¼ s0nð1 � T=TcÞn�1ð�1=TcÞ < 0

2a. For dE ¼ TdS � PdV þ Ydy þ mdn;E ¼ TS � PV þ Yy þ mn :

c ¼ E � VðqE=qVÞS;y;n ¼ E þ PV

dc ¼ dEþPdVþVdP ¼ TdS � PdV þ Ydy þ mdn þ PdV þ VdP

¼ TdS þ VdP þ Ydy þ mdn

2b. f ¼ E � SðqE=qSÞV;y;ni
� VðqE=qVÞS;y;ni

� yðqE=qyÞS;V;ni

¼ E � TS þ PV � Yy

df ¼ dE � TdS � SdT þ PdV þ VdP � Ydy � ydY

¼ �SdT þ VdP � ydY þ mdn

3a. Since T is held constant, it is natural to use the Helmholtz Free Energy,

A, i.e., dA ¼ �SdT þ fdL (assuming PV is constant).

� Conditions for equilibrium: dð1ÞAT;L ¼ 0

� Conditions for stability: dð2ÞAT;L > 0

Divide strip into two parts, Lð1Þ and Lð2Þ. Because L is constant,

dLð1Þ ¼ �dLð2Þ. (Note that T is fixed and uniform throughout.)

dð1ÞAT;L ¼ �fð1ÞdLð1Þ þ fð2ÞdLð2Þ ¼ ðfð1Þ � fð2ÞÞdLð1Þ ¼ 0 ) fð1Þ ¼ fð2Þ ¼ f

dð2ÞAT;L ¼ 1

2
f½q2A=qðLð1ÞÞ2	T;Lð2Þ ðdLð1ÞÞ2 þ ½q2A=qðLð2ÞÞ2	T;Lð1Þ ðdLð2ÞÞ2g > 0

Since ðdLð1ÞÞ2 ¼ ð�qLð2ÞÞ2
we have ðq2A=qL2ÞT > 0 or ðqf=qLÞT > 0.
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3b. If f ¼ TfðLÞ, then to satisfy solution 3a, we must have ðqf=qLÞT ¼
Tdf=dL > 0, i.e., fðLÞ must be a monotonically increasing function

of L.

3c. a ¼ 1=LðqL=qTÞf ¼ �1=Lðqf=qTÞL=ðqf=qLÞT

¼ �ð1=LÞfðLÞ=Tðdf=dLÞ < 0

3d. ðqE=qLÞT ¼ f � Tðqf=qTÞL ¼ TfðLÞ � TfðLÞ ¼ 0

3e. dE ¼ dq þ dw ¼ dq þ fdL; �E ¼ q þ
Ð

fdL; q ¼ �E �
Ð

fdL; �E ¼ 0

at constant T; q ¼ �
Ð
ðfdLÞ ¼ �T

Ð 2

1
fðLÞdL < 0 since f is an increas-

ing function of L.

4. ðq2A=qV2ÞT;ni
¼ �ðqP=qVÞT;ni

� 0

ðq2G=qP2ÞT;ni
¼ �ðqV=qPÞT;ni

¼ 1=ðqP=qVÞT;ni
� 0

ðq2E=qS2ÞV;ni
¼ ðqT=qSÞV;ni

¼ T=CV � 0

ðq2A=qT2ÞV;ni
¼ �ðqS=qTÞV;ni

¼ CV=T � 0

SOLUTION TO SET IX

1. In one molecule there are two atoms of class 35Cl and class 37Cl. The

abundance of 35Cl is 0.75% and of 37Cl is 0.25%. This gives rise to the

following probabilities:

35Cl2 ¼ ½2!=ð2!0!Þ	ð0:75Þ2 ¼ 0:5635

35Cl � 37Cl ¼ ½2!=ð1!1!Þ	ð0:75Þð0:25Þ ¼ 0:375

37Cl2 ¼ ½2!=ð0!2!Þ	ð0:25Þ2 ¼ 0:0625

2.
	CMB

D ¼ 
ig
Ni

i =Ni!; ln	CMB
D

¼ �iðNi ln gi � Ni ln Ni þ NiÞ
ln	CMB

D ¼ ½N1 ln g1 þ . . .Ni ln gi . . .� ðN1 ln N1 þ . . .Ni ln Ni þ . . .Þ
þ ðN1 þ . . .Ni þ . . .Þ	

Differentiating with respect to Ni, which is regarded here as a particular

variable, holding all other Nj 6¼ i constant, gives

q ln	CMB
D =qNi ¼ ln gi � Ni=Ni � ln Ni þ 1 ¼ aþ bei

Thus, ln gi=Ni ¼ aþ bei or Ni ¼ gie
�ae�bei and therefore N ¼

e�a�igie
�bei ; e�a ¼ gie

�bei=�igie
�bei and Ni ¼ Ngie

�bei= �igie
�bei .
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3. (See Fig. S9.1) Ni=N ¼ gie
�bei=�igie

�bei ;N1=1; 000

¼ 3e�b=ð3e�b þ 2e�2bÞ
N2=1; 000 ¼ 2e�2b=ð3e�b þ 2e�2bÞ

E ¼ N1e1 þ N2e2

¼ ½1; 000=ð3e�b þ 2e�2bÞ	
� ½3e�b � 1 þ 2e�2b � 2	

¼ 1; 200
Solve for b:

10ð3e�b þ 4e�2bÞ ¼ 12ð3e�b þ 2e�2bÞ
30e�b þ 40e�2b ¼ 36e�b þ 24e�2b ) 30 þ 40e�b

¼ 36 þ 24e�b ) e�b ¼ 3=8:

Therefore,

N1 ¼ ½1; 000ð3Þð3=8Þ	=½3ð3=8Þ þ 2ð3=8Þ2	 ¼ 1; 000=ð1 þ 0:25Þ ¼ 800

N2 ¼ ½1; 000ð2Þð3=8Þ2	=½3ð3=8Þ þ 2ð3=8Þ2	 ¼ 1; 000=5 ¼ 200:

4. N1=N ¼ e�be=½e�bex0 þ e�be	 ¼ e�be=½1 þ e�be	 ¼ 1=½ebe þ 1	
Thus,

N1ebe þ N1 ¼ N; ebe ¼ ðN � N1Þ=N1;b ¼ ð1=eÞ ln½ðN � N1Þ=N1	
since b ¼ 1=kT and T ¼ e=fk ln½ðN � N1Þ=N1	g. Observing that

E ¼ �iNiei ¼ N0 � 0 þ N1 � e ¼ N1e, it follows that

when E> ! 0 N1 ! 0 ln½ðN � N1Þ=N1	 ! 1> and T ! 0

when E< ! 1
2

N1e N1 ! 1
2

N< ln½ðN � N1Þ=N1	 ! 0> and T ! 1
when E> ! 1

2
N1e N1 ! 1

2
N> ln½ðN � N1Þ=N1	 ! 0< and T ! �1

when E< ! Ne N1 ! N< ln½ðN � N1Þ=N1	 ! 1< and T ! 0

N1 ε

O
N0

Figure S9.1 Two energy levels

196 SOLUTIONS TO PROBLEMS



The symbols > and < mean that the value is slightly larger or slightly

smaller than the quantity to which they refer. A plot of T vs. E looks

like the graph in Fig. S9.2. As E increases from 0 to Ne, the

temperature (the absolute temperature!) increases from 0 to infinity,

changes abruptly from þ1 to �1 at 1=2Ne, and then continues with

negative values until T ¼ 0 is reached at E ¼ Ne.

Note: This peculiar behavior of the temperature comes about because of the

assumption of the presence of a finite number of states. We only used two states

in this example; if we had used a larger but finite number of states, we would have

arrived at a similar conclusion. In a realistic system, there are an infinite number of

states and as the energy rises these states become activated and no negative absolute

temperatures are predicted. Nonetheless, if the system consists of several modes of

motion and one of these modes has a finite number of states (as, for example,

magnetic states) that remain essentially independent for a long time from the rest of

the system, then such a system can give rise to absolute negative temperatures.

T
0

1/2 Nε

Nε

+∞

−∞

Figure S9.2 Variation of T with E for the two-state system

SOLUTION TO SET IX 197



SOLUTION TO SET X

1. no ¼ 6:98 � 1013 s�1;

N1=N0 ¼ exp½�ð1=2 þ 1Þhno=kT	= exp½ð�1=2hno þ 0Þhno=kTÞ	 ¼ expð�hno=kTÞ
N1=N2 ¼ exp½�ð6:626 � 10�27 � 6:98 � 1013Þ=1:38 � 10�16 � T	 ¼ e�3351:44=T

N1=N0

(a) T ¼ 25�C ¼ 298 K 1:31 � 10�5

(b) T ¼ 800�C ¼ 1; 073 K 4:4 � 10�2

(c) T ¼ 3; 000�C ¼ 3; 273 K 0:36

2. S ¼ k ln	CMB
D ¼ k ln
iðgi=Ni!Þ ¼ k�iðNi ln gi � Ni ln Ni þ NiÞ

¼ k�iðln gi=Ni þ 1Þ

Because Ni=N ¼ gie
�bei=q or gi=Ni ¼ q=Nebei , we obtain

S¼k�iNi½ln q=N þ beiþ1Þ ¼ kN ln q=Nþbk�iNiei þ kN. Substituteb¼1=
kT, �iNiei ¼ E ¼ kNT2ðq ln q=qTÞV;N and S ¼ kN lnðq=NÞ þ kN ðq ln q=
qTÞV;N þ kN.

� Effect of the ‘‘zero’’ of energy on S:

e0i ¼ ei þ ei

q0 ¼ �igie
�be

0
i ¼ �igie

�bei
� �

e�be0 ¼ qe�be0

S ¼ kN ln q0=N þ bk�iNie0i þ kN

¼ kN ln q=N � kNbe0 þ bk�iNei þ bkNe0 þ kN

The zero of energy terms cancel, and the remaing expression is the

same as above without the zero of energy. Thus, S is unaffected by the

zero of energy.

3. He is monatomic. There are no vibrational and rotatational contributions.

There are also no electronic contributions, since we are only considering

the ground state, and gel;0 ¼ 1. Thus, the total partition function is just

the translational partition function.

E � E0 ¼ kNT2ðq ln q=qTÞV; qtr

¼ ð2pmkT=h2Þ3=2
V; ln qtr ¼ 3=2 ln T þ const

N ¼ N0 ¼ 6:02 � 1023;T ¼ 273 K;
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E � E0 ¼ 3=2 � 1:38 � 10�16 erg � K�1 � molecules�1

� 6:02 � 1023 molecules=mol � 273 K

¼ 3:402 � 1010 erg=mol ¼ 3:402 � 103 J=mol

H � E0 ¼ kNT2ðq ln q=qTÞV;N þ ðNkT=VÞ ¼ 3=2 NkT þ NkT

¼ 5=2NkT ¼ 5:669 1010 erg=mol ¼ 5:669 � 103 J=mol

A � E0 ¼ �kNT ln q=N � kNT ¼ �kNTðln q=N þ 1Þ

¼ �1:38 � 10�16 � 6:02 � 1023 � 273fln½2p� ð4=6:02 � 1023Þ

� ð1:38 � 10�16 � 273=ð6:626 � 10�27Þ2	3=2

� 22:4 � 103=6:02 � 1023	 erg=mol

¼ �3:047 � 1011 erg=mol ¼ �3:047 � 104 J=mol

m� e0 ¼ �kT ln q=N ¼ ðA � E0Þ=ð6:02 � 1023Þ þ kT

¼ �3:047 � 1011=6:02 � 1023 ¼ 1:38 � 10�16 � 273 erg=molecules

¼ �4:686 10�13 erg=molecules ¼ �4:686 � 10�20 J=molecules

CV ¼ ðqE=qTÞV ¼ 3=2 � 1:38 10�16 � 6:02 � 1023

¼ 1:246 � 108 erg � K�1 mol�1 ¼ 12:46 J � K�1 � mol�1

ð¼ 2:98 cal � K�1 � mol�1Þ

4. Kc ¼ 
iðNi=VÞni ¼ 
Iðqi=VÞni e��e0kT

Cl2 , 2 Cl

Kc ¼ ½ðqcl=VÞ2	=ðqCl2
=VÞ	e�ð2e0;Cl�e0;Cl2

Þ=kT; e0;Cl ¼ 0; e0;Cl2 ¼ �D0

D0 ¼ 238:9 � 103 J=mol ¼ 238:9 � 1010 erg=mol

¼ ð238:9 1010=6:02 � 1023Þ erg=molecule

¼ 3:968 � 10�12 erg=molecule

ðqCl=VÞ2 ¼ f½ð2p� 35=6:02 � 1023Þ � 1:38 � 10�16

� 2; 000=ð6:63 � 10�27Þ2	3=2 � 4g2

¼ 1:388 � 1028 molecules2 � cm�6

Note: q is dimentionless, but q=V is not. In the cgs system, which we are using here, it

has the dimensions of (volume per molecule)�1, i.e., q=V has the dimensions of

molecule/cm3/cm�3.

SOLUTION TO SET X 199



ðqCl2
=VÞ ¼ ½2p� ð70=6:02 � 1023Þ � 1:38 � 10�16 � 2; 000=ð6:63 10�27Þ2	3=2

� ½2; 000=ð2 � 0:351Þ	 � ½1=ð1 � e�813=2000Þ	
¼ 9:818 � 1027 � 2:849 � 103 � 2:99

¼ 8:374 � 1031 molecules=cm3

e��e0=kT ¼ expðe0;Cl2=kTÞ ¼ e�D0=kT

¼ expð�3:968 � 10�12=1:38 � 10�16 � 2000Þ
¼ 5:696 � 10�7

Kc ¼ ½ð1:388 � 1028Þ2 � 5:696 � 10�7	=
� ½9:818 � 1027 � 2:849 � 103 � 2:99	

¼ 1:312 � 1018 molecules=cm3 ¼ 2:18 � 10�6 mol=cm3
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INDEX

Absolute temperature (Second Law),

36–38

coupled cycles, 36–38

ideal gas, 36

Absolute zero, unattainability of,

Third Law, 67–68

Adiabatic change, ideal gas, First Law,

28–29

Adiabatic walls, thermodynamics, 13

Arbitrary cycle, Second Law, 38

Axiomatic approach:

First Law, 19–23, 42

Second Law, 41–43

entropy, 45–48

Beattie-Bridgeman equation, equations

of state, 84

Berthelot equation, equations of state,

84

Boiling point elevation, solutions

(nonelectrolytes), colligative

properties, 109–111

Bose-Einstein statistics, statistical

mechanics, 137–138

Carathéodory’s Principle, Second Law,

axiomatic approach, 41–43,

45

Carathéodory’s Theorem, Second Law,

45

axiomatic approach, 41–43

Carnot cycle (Second Law), 33–34, 35

arbitrary cycle, 38

Clausius inequality, 39

Carnot Theorem, Second Law, 34–35,

36

Chemical equilibrium, 99–101. See also

Equilibrium

equilibrium constant, 100–101

internal energy, 99–100

Chemical potential:

condensed systems, 92–93

free energy functions, 59–60

gases, 87–88
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Clapeyron Equation:

generalized, phase equilibrium,

98–99

Phase equilibrium, 96

Clausius-Clapeyron Equation, phase

equilibrium, 97

Clausius inequality, Second Law,

39–41

Clausius Principle, Second Law, 33,

35–36

Closed system, thermodynamics, 8

Colligative properties (solutions,

nonelectrolytes), 108–113

boiling point elevation, 109–111

freezing point depression,

109–111

osmotic pressure, 112–113

solvent vapor pressure depression,

108–109

Combinatory analysis, statistical

mechanics, 134–136

Condensed systems, 91–93

chemical potential, 92–93

enthalpy, 93

entropy, 93

gases compared, 91–92

Conservation of energy, First Law,

17–18

Coupled cycles, Second Law, absolute

temperature, 36–38

Cp – Cv, First Law, 27–28

Critical region, phase transition,

124–126

Cross terms, stability conditions from,

80–81

Crystalline solids (localized systems),

entropy, statistical mechanics/

thermodynamics, 145

�A and �G relations to work, free

energy functions, 56–58

Dependent variables:

of partial derivatives, First Law,

26–27

thermodynamics, 8–9

Diathermal walls, thermodynamics, 13

Diatomics:

rotational molecular partition

function, 152–153

vibrational molecular partition

function, 152

Different subscripts, partial derivatives,

First Law, 27

Dilute solutions. See Solutions

(nonelectrolytes)

Distinguishable (localized) particles,

indistinguishable (nonlocalized)

particles and, statistical

mechanics, 139

Distributions D1, SD, microstate number

and, statistical mechanics,

132–134

Einstein solid (statistical mechanics

application), 164–166

energy, 164–165

entropy, 165–166

heat capacity, 165

Elastic hard sphere, equations of state,

83–84

Electronic molecular partition function,

154

Energy:

equilibrium/stability, 75–77

boundary fully heat conducting,

deformable, permeable, 75–76

boundary semi-heat conducting,

semi-deformable, semi-

permeable, 76–77

localized particles systems, statistical

mechanics application, 164–165

statistical mechanics/

thermodynamics, 143–144

zero of, molecular partition function,

155–157

Engine efficiency, Second Law, 36–38

coupled cycles, 36–38

ideal gas, 36
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Ensemble averages, time averages and,

statistical mechanics, 131–132

Enthalpy:

condensed systems, 93

First Law, heat and, 24–25

free energy functions, 53

gases, 85–86

mixtures of gases, 90–91

Second Law, 32

Entropy:

condensed systems, 93

equilibrium/stability, virtual

variation, 72

gases, 86–87

localized particles systems, statistical

mechanics application, 165–166

mixtures of gases, 90–91

Second Law:

axiomatic approach, 45–48

nonisolated systems, 48–49

statistical mechanics/

thermodynamics, 144–145

Equations of state, gases, 83–85

Equilibrium:

chemical, 99–101

equilibrium constant, 100–101

internal energy, 99–100

phase equilibrium, 94–99

Clapeyron Equation, 96

generalized, 98–99

Clausius-Clapeyron Equation, 97

phase rule, 94–96

thermodynamics, reversible

processes, 12

Equilibrium constant, chemical

equilibrium, 100–101

Equilibrium constraints, statistical

mechanics application, 161–164

Equilibrium/stability, 70–82.

See also Stability

conditions from E, 78–80

cross terms, 80–81

derivatives with respect to intensive

variables, 82

energy, 75–77

boundary fully heat conducting,

deformable, permeable, 75–76

boundary semi-heat conducting,

semi-deformable, semi-

permeable, 76–77

general conditions, 78

inequalities, 72–75

mechanics, 70

other potentials, 77, 81

thermodynamics, 70–71

virtual variation, 71–72

Euler’s theorem, free energy functions,

60–62

Exact differentials, first Law, 18–19

Extensive variables, thermodynamics, 9

Fermi-Dirac statistics, statistical

mechanics, 137

First Law, 14–31

applications, 23–25, 27–31

adiabatic change, ideal gas,

28–29

Cp – Cv, 27–28

heat and enthalpy, 24–25

heat and internal energy, 23–24

heat capacity, 23

isothermal change, ideal gas, 28

Joule and Joule-Thomson

coefficients, 29–31

axiomatic approach, 19–23, 42

definitions, 14–15

exact/inexact differentials, 18–19

partial derivatives, 26–27

thermal contact/thermal equilibrium,

13

traditional approach, 16–18

Zeroth Law, temperature, 15–16

First-order phase transition, 119–120

fL work, P-V work, sA and, 116–118

Free energy, mixtures of gases, 90–91

Free energy functions, 52–64

chemical potential, 59–60

�A and �G relations to work, 56–58

Euler’s theorem, 60–61

INDEX 203



Free energy functions (Continued)

generalizations, 58–59

multicomponent system, 59

single component system, 58

Gibbs-Helmholtz equations, 55

Legendre transformations, 53–54

Maxwell relations, 55

thermodynamics potentials, 61–64

Freezing point depression, solutions

(nonelectrolytes), colligative

properties, 109–111

Fugacity:

gases, 88–89

partial, mixtures of gases, 90

Gases, 83–91

chemical potential, 87–88

condensed systems compared, 91–92

enthalpy, 85–86

entropy, 86–87

equations of state, 83–85

fugacity, 88–89

ideal gas:

adiabatic change, First Law, 28–29

equations of state, 83

isothermal change, First Law, 28

mixtures of, 90–91

nonlocalized systems, entropy,

statistical mechanics/

thermodynamics, 145

solutions (nonelectrolytes), activities

and standard state conventions,

102–103

standard states of, 89–90

thermodynamic functions of,

statistical mechanics

application, 159–161

Gibbs free energy:

free energy functions, 53, 59–60

gases, chemical potential, 87–88

phase transition, stable, metastable,

and unstable isotherms, 122

Gibbs-Helmholtz equations:

free energy functions, 55

solutions (nonelectrolytes), solvent

vapor pressure depression, 110

Heat. See also First Law

enthalpy and, First Law, 24–25

First Law, 14–15

axiomatic approach, 19–23

internal energy and, First Law,

23–24

statistical mechanics/

thermodynamics, 143–144

Heat capacity:

First Law, 23

statistical mechanics applications,

localized particles systems, 165

Helmholtz free energy, free energy

functions, 53, 59–60

Henry’s Law, ideally dilute solutions,

105–107

Heterogeneous systems/phases,

thermodynamics, 9

Homogeneous systems/phases,

thermodynamics, 9

Ideal gas. See also Gases

adiabatic change, First Law, 28–29

equations of state, 83

isothermal change, First Law, 28

Ideally dilute solutions, Henry’s Law,

105–107

Ideal solutions:

nonelectrolytes, thermodynamic

functions of mixing, 107

Raoult’s Law, 104–105

Independent variables,

thermodynamics, 8–9

Indistinguishable (nonlocalized)

particles, distinguishable

(localized) particles and,

statistical mechanics, 139

Inequalities, equilibrium/stability,

72–75

Inexact differentials, first Law, 18–19
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Intensive variables:

derivatives with respect to,

equilibrium/stability, 82

phase equilibrium, 94–95

thermodynamics, 9

Internal energy:

chemical equilibrium, 99–100

First Law, 17

heat and, First Law, 23–24

Second Law, 32

Irreversibility, spontaneous processes, 12

Irreversible processes, Second Law,

applications, 51

Isolated system, thermodynamics, 8

Isothermal change, ideal gas,

First Law, 28

Isotherms, stable, metastable, and

unstable, phase transition,

120–124

Joule, Joule-Thomson coefficients and,

First Law, 30–31

Joule Paddle-Wheel experiment, 21

Joule-Thomson coefficients, Joule and,

First Law, 30–31

Kelvin-Planck Principle, Second Law,

33, 35–36

Law of Corresponding States, equations

of state, 84

Laws, phenomenological approach, 7

Legendre Transformations:

Clapeyron Equation, 96

free energy functions, 53–54, 62, 63

Lewis, G. N., Third Law, 67

Liquid-liquid solutions

(nonelectrolytes), activities and

standard state conventions, 104

Liquids, pure, solutions

(nonelectrolytes), activities and

standard state conventions, 103

Liquid system. See Condensed systems

Localized (distinguishable) particles,

nonlocalized (indistinguishable)

particles and, statistical

mechanics, 139

Localized particles systems, statistical

mechanics application,

164–166

energy, 164–165

entropy, 165–166

heat capacity, 165

Localized systems, entropy, statistical

mechanics/thermodynamics,

145

Macroscopic constituents, statistical

mechanics, 129–130

Maxwell-Boltzmann statistics:

microstate number, SD, distributions

D1, 133

statistical mechanics, 137, 140–142

Maxwell relations, free energy

functions, 55

Mechanics. See also

Statistical mechanics

equilibrium/stability, 70

field of, 1

Metastable equilibriums, mechanics, 70

Metastable isotherms, phase transition,

120–124

Microscopic constituents,

thermodynamics, 129–130

Microstate number, SD, distributions

D1 and, statistical mechanics,

132–134

Mixtures, solutions (nonelectrolytes),

activities and standard state

conventions, 103–104

Molecular behavior, quantum

mechanics, 1

Molecular partition function,

150–157

electronic, 154

energy, zero of, 155–157
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Molecular partition

function (Continued)

nuclear spin states, 154–155

rotational (diatomics), 152–153

translational, 151

vibrational (diatomics), 152

Multicomponent system, free energy

functions, 59

Nernst Heat Theorem, Third Law, 66, 67

Neutral equilibriums, mechanics, 70

Nonelectrolyte solutions. See Solutions

(nonelectrolytes)

Nonideal solutions (nonelectrolytes),

thermodynamic functions of

mixing, 107–108

Nonisolated systems, Second Law,

entropy, 48–49

Nonlocalized (indistinguishable)

particles, localized

(distinguishable) particles and,

statistical mechanics, 139

Nonlocalized systems, entropy,

statistical mechanics/

thermodynamics, 145

Nuclear spin states, molecular partition

function, 154–155

Open system, thermodynamics, 8

Osmotic pressure, solutions

(nonelectrolytes), colligative

properties, 112–113

Partial derivatives:

dependent variables, First Law,

26–27

First Law, 26–27

subscripts, First Law, 27

Partial fugacity, mixtures of gases, 90

Partition function, statistical mechanics,

140–142

Pfaffian differential forms, Second Law,

43–45

multiple variables, 44–45

two variables, 44

Phase equilibrium, 94–99. See also

Equilibrium

Clapeyron Equation, 96

generalized, 98–99

Clausius-Clapeyron Equation, 97

phase rule, 94–96

Phase rule, phase equilibrium, 94–96

Phases, homogeneous/heterogeneous

systems/phases, 9

Phase transitions, 119–128

critical region, 124–126

first-order, 119–120

stable, metastable, and unstable

isotherms, 120–124

Phenomenological approach, laws, 7

Planck, Third Law, 66, 67

Population ratios, statistical mechanics

application, 158–159

Pressure, statistical mechanics/

thermodynamics, 146–147

Pure liquids and solids, solutions

(nonelectrolytes), activities and

standard state conventions, 103

P-V work:

sA, fL work and, 116–118

work, 115–116

Quantum mechanics, field of, 1

Quantum state, statistical mechanics,

140–142

Quasi-static processes,

thermodynamics, 10–11

Raoult’s Law, ideal solutions, 104–105

Reversibility, concept of, 10–11

Reversible processes:

Second Law:

applications, 50–51

entropy, axiomatic approach,

45–48

thermodynamics, 10–11, 12–13
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Rotational molecular partition function

(diatomics), 152–153

sA, fL work, P-V work and, 116–118

Second Law, 32–51

absolute temperature, 36–38

coupled cycles, 36–38

ideal gas, 36

applications, 50–51

irreversible processes, 51

reversible processes, 50–51

arbitrary cycle, 38

axiomatic approach, 41–43

entropy, 45–48

Carathéodory’s Theorem, 45

Clausius inequality, 39–41

entropy, nonisolated systems, 48–49

Pfaffian differential forms, 43–45

multiple variables, 44–45

two variables, 44

traditional approach, 32–36

Single component system, free energy

functions, generalizations, 58

Solid-liquid solutions (nonelectrolytes),

activities and standard state

conventions, 104

Solids, pure, solutions (nonelectrolytes),

activities and standard state

conventions, 103

Solid system. See Condensed systems

Solutions (nonelectrolytes), 102–113

activities and standard state

conventions, 102–104

gases, 102–103

mixtures, 103–104

pure liquids and solids, 103

colligative properties, 108–113

boiling point elevation, 109–111

freezing point depression, 109–111

osmotic pressure, 112–113

solvent vapor pressure depression,

108–109

ideally dilute solutions, 105–107

ideal solutions, 104–105

thermodynamic functions of mixing,

107–108

ideal solutions, 107

nonideal solutions, 107–108

Solvents, mixtures, solutions

(nonelectrolytes), 103

Solvent vapor pressure depression,

solutions (nonelectrolytes),

colligative properties, 108–109

Spontaneity, free energy functions, �A

and �G relations to work,

56–58

Spontaneous processes, irreversibility

of, 12

Stability. See also Equilibrium/stability

conditions from E, 78–80

cross terms, 80–81

general conditions, 78

other potentials, 81

Stable equilibriums, mechanics, 70

Stable isotherms, phase transition,

120–124

State variables, thermodynamics, 8–9

Statistical mechanics, 129–142,

129–166. See also Mechanics;

Thermodynamics

applications, 158–166

equilibrium constraints, 161–164

localized particles systems,

164–166

energy, 164–165

entropy, 165–166

heat capacity, 165

population ratios, 158–159

thermodynamic functions of gases,

159–161

Bose-Einstein statistics, 137–138

combinatory analysis, 134–136

distinguishable (localized) and

indistinguishable (nonlocalized)

particles, 139

Fermi-Dirac statistics, 137

field of, 1

illustrative problem, presented,

130–131
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Statistical mechanics (Continued)

macroscopic/microscopic

constituents, 129–130

maximizing S1, 139–140

Maxwell-Boltzmann statistics, 137

microstate number, SD, distributions

D1, 132–134

molecular partition function,

150–157

electronic, 154

energy, zero of, 155–157

nuclear spin states, 154–155

rotational (diatomics), 152–153

translational, 151

vibrational (diatomics), 152

partition function, 140–142

problems in, 136–137

temperature/heat, 14–15

thermodynamics and, 143–149

energy, heat, and work, 143–144

entropy, 144–145

functions E, H, S, A, G, and m,

147–149

identification of b with 1/KT,

145–146

pressure, 146–147

time and ensemble averages,

131–132

Subscripts, partial derivatives,

First Law, 27

Surroundings:

systems, 8

work concept, 9–10

Systems:

homogeneous/heterogeneous

systems/phases, 9

thermodynamics, 8

Taylor series, equilibrium/stability,

inequalities, 74–75

Temperature. See also First Law

First Law, 14–15

axiomatic approach, 19–23

Zeroth Law, 15–16

Thermal contact, defined, 13

Thermal equilibrium, defined, 13

Thermodynamics, 1–126. See also

First Law; Gases; Second Law;

Statistical mechanics;

Third Law

abdiabatic/diathermal walls, 13

condensed systems, 91–93

chemical potential, 92–93

enthalpy, 93

entropy, 93

gases compared, 91–92

equilibrium/stability, 70–71

field of, 1–2

gases, 83–91

homogeneous/heterogeneous

systems/phases, 9

intensive/extensive variables, 9

phase transitions, 119–128

critical region, 124–126

first-order, 119–120

stable, metastable, and unstable

isotherms, 120–124

phenomenological approach, 7

quasi-static processes, 10–11

reversible processes, 10–11,

12–13

state variables, 8–9

statistical mechanics and, 129–130,

143–148

energy, heat, and work, 143–144

functions E, H, S, A, G, and m,

147–149

identification of b with 1/KT,

145–146

pressure, 146–147

thermodynamic functions of gases

application, 159–161

systems, 8

thermal contact/thermal equilibrium,

13

work concept, 9–10

Third Law, 65–69

comments on, 68–69

statements of, 66–68

208 INDEX



Time averages, ensemble averages and,

statistical mechanics, 131–132

Translational molecular partition

function, 151

Unstable equilibriums, mechanics, 70

Unstable isotherms, phase transition,

120–124

Van der Waals equation, equations of

state, 84, 85

Variables:

intensive/extensive variables,

thermodynamics, 9

thermodynamics, 8–9

Vibrational molecular partition function

(diatomics), 152

Virial Equation of State, equations of

state, 84

Virtual variation, equilibrium/stability,

71–72

Volume, mixtures of gases, 90–91

Work, 114–118

First Law, axiomatic approach,

19–23

free energy functions, �A and �G

relations to, 56–58

P-V work, 115–116

P-V work, sA, and fL work,

116–118

representation of, 114–115

statistical mechanics/

thermodynamics, 143–144

Work concept, thermodynamics, 9–10

Zero, of energy, molecular partition

function, 155–157

Zeroth Law:

temperature, 15–16

thermal contact/thermal equilibrium,

13
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